Advertisement

Communications in Mathematical Physics

, Volume 257, Issue 1, pp 1–28 | Cite as

A Spin Decomposition of the Verlinde Formulas for Type A Modular Categories

  • Christian Blanchet
Article

Abstract

A modular category is a braided category with some additional algebraic features. The interest of this concept is that it provides a Topological Quantum Field Theory in dimension 3. The Verlinde formulas associated with a modular category are the dimensions of the TQFT modules. We discuss reductions and refinements of these formulas for modular categories related with SU(N). Our main result is a splitting of the Verlinde formula, corresponding to a brick decomposition of the TQFT modules whose summands are indexed by spin structures modulo an even integer. We introduce here the notion of a spin modular category, and give the proof of the decomposition theorem in this general context.

Keywords

Neural Network Statistical Physic Field Theory Complex System Quantum Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andersen, J., Masbaum, G.: Involutions on moduli spaces and refinements of the Verlinde formula. Math. Ann. 314(2), 291–326 (1999)CrossRefGoogle Scholar
  2. 2.
    Andersen, H., Paradowski, J.: Fusion category arising from semisimple Lie algebras. Commun. Math. Phys. 169(3), 563–588 (1995)Google Scholar
  3. 3.
    Atiyah, M. F.: Riemann surfaces and spin structures. Ann. Ecole Norm. Sup. (4)4, 47–62 (1971)Google Scholar
  4. 4.
    Bakalov, B., Kirillov, A.: Lecture on tensor categories and modular functors. Univ. Lecture Series No.21, Providence, RI: AMS 2001Google Scholar
  5. 5.
    Beauville, A.: Conformal blocks, fusion rules and the Verlinde formula. Israel Math. Conf. Proceedings, Vol.9, 75–96 (1996)Google Scholar
  6. 6.
    Beauville, A., Laszlo, Y.: Conformal blocks and generalized theta functions. Commun. Math. Phys. 164, 385–419 (1994)Google Scholar
  7. 7.
    Beliakova, A., Blanchet, C.: Modular categories of types B,C and D. Comment. Math. Helv. 76, 467–500 (2001)Google Scholar
  8. 8.
    Bismut, J-M., Labourie, F.: Formules de Verlinde pour les groupes simplement connexes et géométrie sympleptique. CRAS, t. 325, Série I, 1009–1014 (1997)Google Scholar
  9. 9.
    Bismut, J-M., Labourie, F.: Sympleptic geometry and the Verlinde formulas. In: Surveys in differential geometry: differential geometry inspired by string theory, Boston, MA: Int. Press, 1999, pp. 97–311Google Scholar
  10. 10.
    Blanchet, C.: Refined quantum invariants for three-manifolds with structure. In: Knot Theory, Banach Center Pub. Vol. 42, Warsaw: Polish Acad. of Sci, 11–22 (1998)Google Scholar
  11. 11.
    Blanchet, C.: Hecke algebras, modular categories and 3-manifolds quantum invariants. Topology, 39, 193–223 (2000)Google Scholar
  12. 12.
    Blanchet, C., Habegger, N., Masbaum, G., Vogel, P.: Topological Quantum Field Theories derived from the Kauffman bracket. Topology 34(4), 883–927 (1995)CrossRefGoogle Scholar
  13. 13.
    Blanchet, C., Masbaum, G.: Topological quantum field theories for surfaces with spin structure. Duke Math. J 82, 229–267 (1996)CrossRefGoogle Scholar
  14. 14.
    Bruguières, A.: Catégories prémodulaires, modularisations et invariants des variétés de dimension 3. Math. Ann. 316(2), 215–236 (2000)Google Scholar
  15. 15.
    Faltings, G.: A proof of the Verlinde formula. J. Alg. Geometry 3, 347–374 (1994)Google Scholar
  16. 16.
    Johnson, D.: Spin structures and quadratic forms on surfaces. J. London Math Soc. (2) 22, 365–377 (1980)Google Scholar
  17. 17.
    Kohno, T., Takata, T.: Level-Rank Duality of Witten 3-manifolds invariants. Adv. Studies in Pure Math. 24, Progress in Algebraic Combinatorics, Orlando, FL: Acad.Press, 1996 pp. 243–264Google Scholar
  18. 18.
    Le, T.: Quantum invariants of 3-manifolds: integrality, splitting, and perturbative expansion. http://arxiv.org/list/math.QA/0004099, 2000
  19. 19.
    Le, T., Turaev, V.: Quantum groups and ribbon G-categories. J. Pure Appl. Algebra 178 (2), 169–185 (2003)Google Scholar
  20. 20.
    Lickorish, W.B.R.: An Introduction to Knot Theory. Grad. Texts in Math. 175, Berlin-Heidelberg-New York: Springer Verlag, 1997Google Scholar
  21. 21.
    Macdonald, I. G.: Symmetric functions and Hall polynomial. 2nd ed. , Oxford: Oxford Science Pub 1995Google Scholar
  22. 22.
    Masbaum, G., Wenzl, H.: Integral modular categories and integrality of quantum invariants at roots of unity of prime order. J. Reine Angew. Math. 505, 209–235 (1998)Google Scholar
  23. 23.
    Milnor, J.: Spin structures on manifolds. L’Enseignement Math. 9, 198–203 (1963)Google Scholar
  24. 24.
    Müger, M.: Galois theory for braided tensor categories and the modular closure. Adv. Math. 150(2), 151–201 (2000)Google Scholar
  25. 25.
    MuPAD: The Open Computer Algebra System. Sciface Software, http://www.mupad.de.Google Scholar
  26. 26.
    Oxbury, W. M., Wilson, S. M. J.: Reciprocity laws in the Verlinde formulae for the classical groups. Trans. AMS 348(7), 2689–2710 (1996)Google Scholar
  27. 27.
    Kassel, C., Rosso, M., Turaev, V.: Quantum groups and knots invariants. Panoramas et Synthèses No 5, Paris: Soc. Math. France, 1997Google Scholar
  28. 28.
    Sorger, C.: La formule de Verlinde. Séminaire Bourbaki 794, 1994Google Scholar
  29. 29.
    Sawin, S.: Quantum groups at roots of unity and modularity. http://arxiv.org/list/math.QA/0308281, 2003
  30. 30.
    Turaev, V.: Quantum invariants of knots and 3-manifolds. De Gruyter Studies in Math. 18, Berlin: De Gruyler, 1994Google Scholar
  31. 31.
    Turaev, V.: Homotopy field theory in dimension 2 and crossed groups-algebras. http://arxiv.org/list/math.QA/9910010, 1999
  32. 32.
    Turaev, V.: Homotopy field theory in dimension 3 and crossed groups-categories. http://arxiv.org/list/math.GT/0005291, 2000
  33. 33.
    Turaev, V., Wenzl, H.: Quantum invariants of 3-manifolds associated with classical simple Lie algebras. Int. J. of Math. 4(2), 323–358 (1993)Google Scholar
  34. 34.
    Turaev, V., Wenzl, H.: Semisimple and modular categories from link invariants. Math. Ann. 309, 411–461 (1997)CrossRefGoogle Scholar
  35. 35.
    Verlinde, E.: Fusion rules and modular transformations in 2d conformal field theory. Nucl. Phys. B 300(3), 360–376 (1988)Google Scholar
  36. 36.
    Yokota, Y.: Skeins and quantum SU(N) invariants of 3-manifolds. Math. Ann. 307, 109–138 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.L.M.A.M.Université de Bretagne-SudVannesFrance

Personalised recommendations