Communications in Mathematical Physics

, Volume 257, Issue 1, pp 119–149 | Cite as

Localization and Gluing of Topological Amplitudes

Article

Abstract

We develop a gluing algorithm for Gromov-Witten invariants of toric Calabi-Yau threefolds based on localization and gluing graphs. The main building block of this algorithm is a generating function of cubic Hodge integrals of special form. We conjecture a precise relation between this generating function and the topological vertex at fractional framing.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aganagic, M., Mariño, M., Vafa, C.: All Loop Topological String Amplitudes from Chern-Simons Theory. Commun. Math. Phys. 247, 467–512 (2004)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Aganagic, M., Klemm, A., Marino, M., Vafa, C.: The Topological Vertex. http://arxiv.org/list/hep-th/0305132, 2003
  3. 3.
    Behrend, K., Fantechi, B.: The Intrinsic Normal Cone. Invent. Math. 128, 45 (1997)CrossRefGoogle Scholar
  4. 4.
    Diaconescu, D.-E., Florea, B., Grassi, A.: Geometric Transitions and Open String Instantons. ATMP 6, 619 (2002)Google Scholar
  5. 5.
    Diaconescu, D.-E., Florea, B., Grassi, A.: Geometric Transitions, del Pezzo Surfaces and Open String Instantons. ATMP 6, 643 (2002)Google Scholar
  6. 6.
    Diaconescu, D.-E., Florea, B.: Large N Duality for Compact Calabi-Yau Threefolds. http://arxiv.org/list/hep-th/0302076, 2003
  7. 7.
    Faber, C.: Algorithms for Computing Intersection Numbers on Moduli Spaces of Curves, with an Application to the Class of the Locus of Jacobians. In : New Trends in Algebraic Geometry, Cambridge: Cambridge Univ. Press., 1999Google Scholar
  8. 8.
    Gopakumar, R., Vafa, C.: On the Gauge Theory/Geometry Correspondence. ATMP 3, 1415 (1999)Google Scholar
  9. 9.
    Graber, T., Pandharipande, R.: Localization of Virtual Classes. Invent. Math. 135, 487 (1999)CrossRefGoogle Scholar
  10. 10.
    Graber, T., Zaslow, E.: Open String Gromov-Witten Invariants: Calculations and a Mirror ‘Theorem’. http://arxiv.org/list/hep-th/0109075, 2001
  11. 11.
    Iqbal, A.: All Genus Topological String Amplitudes and 5-brane Webs as Feynman Diagrams. http://arxiv.org/list/hep-th/0207114, 2002
  12. 12.
    Iqbal, A., Kashani-Poor, A.-K.: SU(N) Geometries and Topological String Amplitudes. http://arxiv.org/list/hep-th/0306032, 2003
  13. 13.
    Katz, S., Liu, C.-C. M.: Enumerative Geometry of Stable Maps with Lagrangian Boundary Conditions and Multiple Covers of the Disc. ATMP 5, 1 (2001)Google Scholar
  14. 14.
    Kontsevich, M.: Enumeration of Rational Curves via Torus Actions. In: The Moduli Space of Curves, Progr. Math. 129, Boston, MA: Birkhäuser 1995, pp. 335–368Google Scholar
  15. 15.
    Labastida, J.M.F., Mariño, M., Vafa, C.: Knots, Links and Branes at Large N. JHEP 11, 007 (2000)CrossRefGoogle Scholar
  16. 16.
    Li, J., Tian, G.: Virtual Moduli Cycles and Gromov-Witten Invariants of Algebraic Varieties. J. Amer. Math. Soc. 11, 119 (1998)CrossRefGoogle Scholar
  17. 17.
    Li, J.: A Degeneration of Stable Morphisms and Relative Stable Morphisms. http://arxiv.org/list/math.AG/0009097, 2000
  18. 18.
    Li, J.: A Degeneration Formula of GW-invariants. http://arxiv.org/list/math.AG/0110113, 2001
  19. 19.
    Li, J., Song, Y.S.: Open String Instantons and Relative Stable Morphisms. ATMP 5, 67 (2002)Google Scholar
  20. 20.
    Liu, C.-C. M.: Moduli of J-Holomorphic Curves with Lagrangian Boundary Conditions and Open Gromov-Witten Invariants for an S1-Equivariant Pair. http://arxiv.org/list/math.SG/0210257, 2002
  21. 21.
    Liu, C.-C. M., Liu, K., Zhou, J.: On a Proof of a Conjecture of Mariño-Vafa on Hodge Integrals. Math. Res. Lett. 11(2), 259–272 (2004)Google Scholar
  22. 22.
    Liu, C.-C. M., Liu, K., Zhou, J.: A Proof of a Conjecture of Mariño-Vafa on Hodge Integrals. J. Diff. Geom. 65, 289–340 (2004)Google Scholar
  23. 23.
    Mariño, M., Vafa, C.: Framed Knots at Large N. http://arxiv.org/list/hep-th/0108064, 2001
  24. 24.
    Mayr, P.: Summing up Open String Instantons and Open image in new window String Amplitudes. http://arxiv.org/list/hep-th/0203237, 2001
  25. 25.
    Okounkov, A., Pandharipande, R.: Hodge Integrals and Invariants of the Unknot. Geom. Topol. 8, 675–699 (2004)MathSciNetGoogle Scholar
  26. 26.
    Ooguri, H., Vafa, C.: Knot Invariants and Topological Strings. Nucl. Phys. B 577, 419 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Department of Physics and AstronomyRutgers UniversityPiscatawayUSA

Personalised recommendations