Communications in Mathematical Physics

, Volume 255, Issue 3, pp 513–575 | Cite as

Quantization of Multiply Connected Manifolds



The standard (Berezin-Toeplitz) geometric quantization of a compact Kähler manifold is restricted by integrality conditions. These restrictions can be circumvented by passing to the universal covering space, provided that the lift of the symplectic form is exact. I relate this construction to the Baum-Connes assembly map and prove that it gives a strict quantization of the original manifold. I also propose a further generalization, classify the required structure, and provide a means of computing the resulting algebras. These constructions involve twisted group C*-algebras of the fundamental group which are determined by a group cocycle constructed from the cohomology class of the symplectic form. This provides an algebraic counterpart to the Morita equivalence of a symplectic manifold with its fundamental group.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baum, P., Connes, A.: Geometric K-theory for Lie groups and foliations. Enseign. Math. (2) 46, 3–42 (2000)Google Scholar
  2. 2.
    Berezin, F.A.: General Concept of Quantization. Commun. Math. Phys. 40, 153–174 (1975)Google Scholar
  3. 3.
    Bordemann, M., Meinrenken, E., Schlichenmaier, M.: Toeplitz Quantization of Kähler Manifolds and gl(N), N→∞ Limits. Commun. Math. Phys. 165, 281–296 (1994)Google Scholar
  4. 4.
    Bursztyn, H., Weinstein, A.: Picard groups in Poisson geometry. Moscow Math. J. 4, 39–66 (2004)Google Scholar
  5. 5.
    Chernoff, P.R.: Essential Self-Adjointness of Powers of Generators of Hyperbolic Equations. J. Funct. Anal. 12, 401–414 (1973)Google Scholar
  6. 6.
    Connes, A.: Noncommutative Geometry. New York: Academic Press, 1994Google Scholar
  7. 7.
    Dixmier, J.: C*-algebras. Amsterdam: North Holland, 1982Google Scholar
  8. 8.
    Folland, G.B.: Introduction to Partial Differential Equations Princeton, N.J.: Princeton University Press, 1976Google Scholar
  9. 9.
    Griffiths, P. Harris, J.: Principles of Algebraic Geometry. New York: Wiley, 1978Google Scholar
  10. 10.
    Gromov, M.: Kähler-Hyperbolicity and L2 Hodge Theory. J. Diff. Geom. 33, 263–292 (1991)MATHGoogle Scholar
  11. 11.
    Hawkins, E.: Geometric Quantization of Vector Bundles and the Correspondence with Deformation Quantization. Commun. Math. Phys. 215, 409–432 (2000)Google Scholar
  12. 12.
    Kirchburg, E., Wassermann, S.: Operations on Continuous Bundles of C*-algebras. Math. Ann. 303, 677–697 (1995)Google Scholar
  13. 13.
    Klimek, S., Lesniewski, A.: Quantum Riemann surfaces, II. The discrete series. Lett. Math. Phys. 24, 125–139 (1992)Google Scholar
  14. 14.
    Klimek, S., Lesniewski, A.: Quantum Riemann surfaces for arbitrary Planck’s constant. J. Math. Phys. 37(5), 2157–2165 (1996)Google Scholar
  15. 15.
    Lance, E.C.: Hilbert C*-Modules. Cambridge: Cambridge University Press, 1995Google Scholar
  16. 16.
    Landsman, N.P.: Mathematical Topics Between Classical and Quantum Mechanics. New York: Springer, 1998Google Scholar
  17. 17.
    Landsman, N.P.: Quantized reduction as a tensor product., 2000
  18. 18.
    Mathai, V.: K-theory of twisted group C*-algebras and positive scalar curvature. Tel Aviv Topology Conference: Rothenberg Festschrift (1998), Contemp. Math. 231, Providence, RI: Amer. Math. Soc., 1999, pp. 203–225Google Scholar
  19. 19.
    Miščenko, A.S., Fomenko, A.T.: The Index of Elliptic Operators Over C*-Algebras. Math. USSR Izvestija 15(1), 87–112 (1980)Google Scholar
  20. 20.
    Natsume, T., Nest, R.: Topological Approach to Quantum Surfaces. Commun. Math. Phys. 202, 65–87 (1999)Google Scholar
  21. 21.
    Packer, J.A., Raeburn, I.: Twisted crossed products of C*-algebras. Math. Proc. Camb. Phil. Soc. 106, 293 (1989)Google Scholar
  22. 22.
    Rieffel, M.A.: C*-algebras associated with irrational rotations. Pacific J. Math. 93, 415–429 (1981)Google Scholar
  23. 23.
    Rieffel, M.A.: Quantization and C*-algebras. Contemp. Math. 167, 67–97 (1994)Google Scholar
  24. 24.
    Roe, J.: Notes on Regularity for Dirac Operators on Bundles of Hilbert C*-Modules. (Unpublished)Google Scholar
  25. 25.
    Schweizer, J.: Crossed products by equivalence bimodules. Univ. Tübingen preprint (1999)Google Scholar
  26. 26.
    Stolz, S.: Concordance Classes of Positive Scalar Curvature Metrics.
  27. 27.
    Woodhouse, N.: Geometric Quantization. Oxford : Clarendon Press, 1980Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Scuola Internazionale Superiore di Studi AvanzatiTriesteItaly

Personalised recommendations