Advertisement

Communications in Mathematical Physics

, Volume 258, Issue 2, pp 349–365 | Cite as

Simple Proof for Global Existence of Bohmian Trajectories

  • Stefan TeufelEmail author
  • Roderich Tumulka
Article

Abstract

We address the question whether Bohmian trajectories exist for all times. Bohmian trajectories are solutions of an ordinary differential equation involving a wavefunction obeying either the Schrödinger or the Dirac equation. Some trajectories may end in finite time, for example by running into a node of the wavefunction, where the law of motion is ill-defined. The aim is to show, under suitable assumptions on the initial wavefunction and the potential, global existence of almost all solutions. We provide an alternative proof of the known global existence result for spinless Schrödinger particles and extend the result to particles with spin, to the presence of magnetic fields, and to Dirac wavefunctions. Our main new result is conditions on the current vector field on configuration-space-time which are sufficient for almost-sure global existence.

Keywords

Magnetic Field Neural Network Complex System Ordinary Differential Equation Vector Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bell, J.S.: On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 38, 447–452 (1966); Reprinted in Bell, J.S.: Speakable and unspeakable in quantum mechanics. Cambridge: Cambridge University Press, 1987, p. 1Google Scholar
  2. 2.
    Berndl, K.: Zur Existenz der Dynamik in Bohmschen Systemen. Ph. D. thesis, Ludwig-Maximilians-Universität München, Aachen: Mainz Verlag, 1995Google Scholar
  3. 3.
    Berndl, K., Daumer, M., Dürr, D., Goldstein, S., Zanghì, N.: A Survey of Bohmian Mechanics. Il Nuovo Cimento 110B, 737–750 (1995)Google Scholar
  4. 4.
    Berndl, K., Dürr, D., Goldstein, S., Peruzzi, G., Zanghì, N.: On the global existence of Bohmian mechanics. Commun. Math. Phys. 173, 647–673 (1995)Google Scholar
  5. 5.
    Bohm, D.: A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables, I. Phys. Rev. 85, 166–179 (1952); Bohm, D.: A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables, II. Phys. Rev. 85, 180–193 (1952)Google Scholar
  6. 6.
    Bohm, D.: Comments on an Article of Takabayasi concerning the Formulation of Quantum Mechanics with Classical Pictures. Progr. Theoret. Phys. 9, 273–287 (1953)Google Scholar
  7. 7.
    Bohm, D., Hiley, B.J.: The Undivided Universe: An Ontological Interpretation of Quantum Theory. London: Routledge, 1993Google Scholar
  8. 8.
    Chernoff, P.R.: Essential Self-Adjointness of Powers of Generators of Hyperbolic Equations. J. Funct. Anal. 12, 401–414 (1973)Google Scholar
  9. 9.
    DiPerna, R.J., Lions, P.L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98, 511–547 (1989)Google Scholar
  10. 10.
    Dürr, D.: Bohmsche Mechanik als Grundlage der Quantenmechanik. Berlin: Springer-Verlag, 2001Google Scholar
  11. 11.
    Dürr, D., Goldstein, S., Zanghì, N.: Quantum Equilibrium and the Origin of Absolute Uncertainty. J. Statist. Phys. 67, 843–907 (1992)Google Scholar
  12. 12.
    Faris, W.G.: Self-adjoint operators. Lecture Notes in Mathematics 433. Berlin: Springer-Verlag, 1975Google Scholar
  13. 13.
    Georgii, H.-O., Tumulka, R.: Global Existence of Bell’s Time-Inhomogeneous Jump Process for Lattice Quantum Field Theory. To appear in Markov Proc. Rel. Fields (2005); http://arvix.org/list/math.PR/0312294, 2003
  14. 14.
    Georgii, H.-O., Tumulka, R.: Some Jump Processes in Quantum Field Theory. In: J.-D. Deuschel, A. Greven (editors) Interacting Stochastic Systems, Berlin: Springer-Verlag, 2005, pp. 55-73Google Scholar
  15. 15.
    Holland, P.R.: The Quantum Theory of Motion. Cambridge: Cambridge University Press, 1993Google Scholar
  16. 16.
    Lefschetz, S.: Differential Equations: Geometric Theory. New York, London: Interscience Publishers, 1957Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Mathematics InstituteUniversity of WarwickCoventryUK
  2. 2.Dipartimento di Fisicadell’Università di Genova and INFN sezione di GenovaGenovaItaly

Personalised recommendations