Covariant Poisson Brackets in Geometric Field Theory
Article
First Online:
- 245 Downloads
- 22 Citations
Abstract
We establish a link between the multisymplectic and the covariant phase space approach to geometric field theory by showing how to derive the symplectic form on the latter, as introduced by Crnković-Witten and Zuckerman, from the multisymplectic form. The main result is that the Poisson bracket associated with this symplectic structure, according to the standard rules, is precisely the covariant bracket due to Peierls and DeWitt.
Keywords
Neural Network Statistical Physic Field Theory Phase Space Complex System
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.Crnković, C., Witten, E.: Covariant Description of Canonical Formalism in Geometrical Theories. In: W. Israel, S. Hawking (eds.), Three Hundred Years of Gravitation, Cambridge: Cambridge University Press, 1987, pp. 676–684Google Scholar
- 2.Crnković, C.: Symplectic Geometry of Covariant Phase Space. Class. Quantum Grav. 5, 1557–1575 (1988)Google Scholar
- 3.Zuckerman, G.: Action Principles and Global Geometry. In: S.-T. Yau (ed.), Mathematical Aspects of String Theory, Singapore: World Scientific, 1987, pp. 259–288Google Scholar
- 4.Woodhouse, N.M.J.: Geometric Quantization. 2nd edition. Oxford: Oxford University Press, 1992Google Scholar
- 5.De Donder, Th.: Théorie Invariante du Calcul des Variations. Paris: Gauthier-Villars, 1935Google Scholar
- 6.Weyl, H.: Geodesic Fields in the Calculus of Variations for Multiple Integrals. Ann. Math. 36, 607–629 (1935)Google Scholar
- 7.Kijowski, J.: A Finite-Dimensional Canonical Formalism in the Classical Field Theory. Commun. Math. Phys. 30, 99–128 (1973); Multiphase Spaces and Gauge in the Calculus of Variations. Bull. Acad. Sc. Polon. 22, 1219–1225 (1974)Google Scholar
- 8.Kijowski, J., Szczyrba, W.: Multisymplectic Manifolds and the Geometrical Construction of the Poisson Brackets in the Classical Field Theory. In: J.-M. Souriau (ed.), Géometrie Symplectique et Physique Mathématique, Paris: C.N.R.S., 1975, pp. 347–379Google Scholar
- 9.Kijowski, J., Szczyrba, W.: A Canonical Structure for Classical Field Theories. Commun. Math. Phys. 46, 183–206 (1976)Google Scholar
- 10.Goldschmidt, H., Sternberg, S.: The Hamilton-Cartan Formalism in the Calculus of Variations. Ann. Inst. Fourier 23, 203–267 (1973)Google Scholar
- 11.Guillemin, V., Sternberg, S.: Geometric Asymptotics. Providence, RI: AMS, 1977Google Scholar
- 12.Garcia, P.L.: The Poincaré-Cartan Invariant in the Calculus of Variations. Symp. Math. 14, 219–246 (1974)Google Scholar
- 13.Cariñena, J.F., Crampin, M., Ibort, L.A.: On the Multisymplectic Formalism for First Order Field Theories. Diff. Geom. App. 1, 345–374 (1991)Google Scholar
- 14.Gotay, M.J.: A Multisymplectic Framework for Classical Field Theory and the Calculus of Variations I. Covariant Hamiltonian Formalism. In: M. Francaviglia (ed.), Mechanics, Analysis and Geometry: 200 Years After Lagrange, Amsterdam: North Holland, 1991, pp. 203–235Google Scholar
- 15.Gotay, M.J., Isenberg, J., Marsden, J.E., Montgomery, R.: Momentum Maps and Classical Relativistic Fields. Part I: Covariant Field Theory. http://arxiv.org/abs/physics/9801019, 1998
- 16.Peierls, R.E.: The Commutation Laws of Relativistic Field Theory. Proc. Roy. Soc. (London) A 214, 143–157 (1952)Google Scholar
- 17.DeWitt, B.: Invariant Commutators for the Quantized Gravitational Field. Phys. Rev. Lett. 4, 317–320 (1960)Google Scholar
- 18.DeWitt, B.: Dynamical Theory of Groups and Fields. In: B. DeWitt, C. DeWitt (eds.), Relativity, Groups and Topology, 1963 Les Houches Lectures, New York: Gordon and Breach, 1964, pp. 585–820Google Scholar
- 19.DeWitt, B.: The Spacetime Approach to Quantum Field Theory. In: B. DeWitt, R. Stora (eds.), Relativity, Groups and Topology II, 1983 Les Houches Lectures, Amsterdam: Elsevier, 1984, pp. 382–738Google Scholar
- 20.Kijowski, J., Tulczyjew, W.M.: A Symplectic Framework for Field Theories. Lecture Notes in Physics 107, Berlin: Springer-Verlag, 1979Google Scholar
- 21.Romero, S.V.: Colchete de Poisson Covariante na Teoria Geométrica dos Campos, PhD thesis, IME-USP, June 2001Google Scholar
- 22.Abraham, R., Marsden, J.E.: Foundations of Mechanics. 2nd edition, Reading, MA: Benjamin-Cummings, 1978Google Scholar
- 23.Arnold, V.: Mathematical Foundations of Classical Mechanics, 2nd edition, Berlin: Springer-Verlag, 1987Google Scholar
- 24.Saunders, D.J.: The Geometry of Jet Bundles, Cambridge: Cambridge University Press, 1989Google Scholar
- 25.Palais, R.: Foundations of Non-Linear Global Analysis. Reading, MA: Benjamin-Cummings, 1968Google Scholar
- 26.Kolář, I., Michor, P.W., Slovák, J.: Natural Operations in Differential Geometry. Berlin: Springer-Verlag, 1993Google Scholar
- 27.Marsden, J.E., Patrick, G.W., Shkoller, S.: Multisymplectic Geometry, Variational Integrators and Nonlinear PDEs. Commun. Math. Phys. 199, 351–395 (1998)Google Scholar
- 28.Wald, R.M.: General Relativity. Chicago, IL: Chicago University Press, 1984Google Scholar
- 29.Barnich, G., Henneaux, M., Schomblond, C.: Covariant Description of the Canonical Formalism. Phys. Rev. D 44, R939–R941 (1991)Google Scholar
- 30.Christodoulou, D.: The Notion of Hyperbolicity for Systems of Euler-Lagrange Equations. In: B. Fiedler, K. Gröger, J. Sprekels (eds.), Equadiff99 - Proceedings of the International Conference on Differential Equations, Vol. 1, Singapore: World Scientific, 2000, pp. 327–338Google Scholar
- 31.Christodoulou, D.: On Hyperbolicity. Contemp. Math. 263, 17–28 (2000)Google Scholar
- 32.Christodoulou, D.: The Action Principle and Partial Differential Equations. Princeton, NJ: Princeton University Press, 2000Google Scholar
- 33.Kanatchikov, I.: On Field Theoretic Generalizations of a Poisson Algebra. Rep. Math. Phys. 40, 225–234 (1997)Google Scholar
- 34.Forger, M. Römer, H.: A Poisson Bracket on Multisymplectic Phase Space. Rep. Math. Phys. 48, 211–218 (2001)Google Scholar
- 35.Forger, M., Paufler, C., Römer, H.: The Poisson Bracket for Poisson Forms in Multisymplectic Field Theory. Rev. Math. Phys. 15, 705–744 (2003)Google Scholar
- 36.Forger, M., Paufler, C., Römer, H.: Hamiltonian Multivector Fields and Poisson Forms in Multisymplectic Field Theory. Preprint IME-USP RT-MAP-0402, July 2004, http://arxiv.org/abs/math-ph/0407057, 2004
- 37.Salles, M.O.: Campos Hamiltonianos e Colchete de Poisson na Teoria Geométrica dos Campos. PhD thesis, IME-USP, June 2004Google Scholar
- 38.Lang, S.: Differential Manifolds. 2nd edition, Berlin: Springer-Verlag, 1985Google Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2005