Advertisement

Communications in Mathematical Physics

, Volume 256, Issue 2, pp 375–410 | Cite as

Covariant Poisson Brackets in Geometric Field Theory

  • Michael ForgerEmail author
  • Sandro Vieira Romero
Article

Abstract

We establish a link between the multisymplectic and the covariant phase space approach to geometric field theory by showing how to derive the symplectic form on the latter, as introduced by Crnković-Witten and Zuckerman, from the multisymplectic form. The main result is that the Poisson bracket associated with this symplectic structure, according to the standard rules, is precisely the covariant bracket due to Peierls and DeWitt.

Keywords

Neural Network Statistical Physic Field Theory Phase Space Complex System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Crnković, C., Witten, E.: Covariant Description of Canonical Formalism in Geometrical Theories. In: W. Israel, S. Hawking (eds.), Three Hundred Years of Gravitation, Cambridge: Cambridge University Press, 1987, pp. 676–684Google Scholar
  2. 2.
    Crnković, C.: Symplectic Geometry of Covariant Phase Space. Class. Quantum Grav. 5, 1557–1575 (1988)Google Scholar
  3. 3.
    Zuckerman, G.: Action Principles and Global Geometry. In: S.-T. Yau (ed.), Mathematical Aspects of String Theory, Singapore: World Scientific, 1987, pp. 259–288Google Scholar
  4. 4.
    Woodhouse, N.M.J.: Geometric Quantization. 2nd edition. Oxford: Oxford University Press, 1992Google Scholar
  5. 5.
    De Donder, Th.: Théorie Invariante du Calcul des Variations. Paris: Gauthier-Villars, 1935Google Scholar
  6. 6.
    Weyl, H.: Geodesic Fields in the Calculus of Variations for Multiple Integrals. Ann. Math. 36, 607–629 (1935)Google Scholar
  7. 7.
    Kijowski, J.: A Finite-Dimensional Canonical Formalism in the Classical Field Theory. Commun. Math. Phys. 30, 99–128 (1973); Multiphase Spaces and Gauge in the Calculus of Variations. Bull. Acad. Sc. Polon. 22, 1219–1225 (1974)Google Scholar
  8. 8.
    Kijowski, J., Szczyrba, W.: Multisymplectic Manifolds and the Geometrical Construction of the Poisson Brackets in the Classical Field Theory. In: J.-M. Souriau (ed.), Géometrie Symplectique et Physique Mathématique, Paris: C.N.R.S., 1975, pp. 347–379Google Scholar
  9. 9.
    Kijowski, J., Szczyrba, W.: A Canonical Structure for Classical Field Theories. Commun. Math. Phys. 46, 183–206 (1976)Google Scholar
  10. 10.
    Goldschmidt, H., Sternberg, S.: The Hamilton-Cartan Formalism in the Calculus of Variations. Ann. Inst. Fourier 23, 203–267 (1973)Google Scholar
  11. 11.
    Guillemin, V., Sternberg, S.: Geometric Asymptotics. Providence, RI: AMS, 1977Google Scholar
  12. 12.
    Garcia, P.L.: The Poincaré-Cartan Invariant in the Calculus of Variations. Symp. Math. 14, 219–246 (1974)Google Scholar
  13. 13.
    Cariñena, J.F., Crampin, M., Ibort, L.A.: On the Multisymplectic Formalism for First Order Field Theories. Diff. Geom. App. 1, 345–374 (1991)Google Scholar
  14. 14.
    Gotay, M.J.: A Multisymplectic Framework for Classical Field Theory and the Calculus of Variations I. Covariant Hamiltonian Formalism. In: M. Francaviglia (ed.), Mechanics, Analysis and Geometry: 200 Years After Lagrange, Amsterdam: North Holland, 1991, pp. 203–235Google Scholar
  15. 15.
    Gotay, M.J., Isenberg, J., Marsden, J.E., Montgomery, R.: Momentum Maps and Classical Relativistic Fields. Part I: Covariant Field Theory. http://arxiv.org/abs/physics/9801019, 1998
  16. 16.
    Peierls, R.E.: The Commutation Laws of Relativistic Field Theory. Proc. Roy. Soc. (London) A 214, 143–157 (1952)Google Scholar
  17. 17.
    DeWitt, B.: Invariant Commutators for the Quantized Gravitational Field. Phys. Rev. Lett. 4, 317–320 (1960)Google Scholar
  18. 18.
    DeWitt, B.: Dynamical Theory of Groups and Fields. In: B. DeWitt, C. DeWitt (eds.), Relativity, Groups and Topology, 1963 Les Houches Lectures, New York: Gordon and Breach, 1964, pp. 585–820Google Scholar
  19. 19.
    DeWitt, B.: The Spacetime Approach to Quantum Field Theory. In: B. DeWitt, R. Stora (eds.), Relativity, Groups and Topology II, 1983 Les Houches Lectures, Amsterdam: Elsevier, 1984, pp. 382–738Google Scholar
  20. 20.
    Kijowski, J., Tulczyjew, W.M.: A Symplectic Framework for Field Theories. Lecture Notes in Physics 107, Berlin: Springer-Verlag, 1979Google Scholar
  21. 21.
    Romero, S.V.: Colchete de Poisson Covariante na Teoria Geométrica dos Campos, PhD thesis, IME-USP, June 2001Google Scholar
  22. 22.
    Abraham, R., Marsden, J.E.: Foundations of Mechanics. 2nd edition, Reading, MA: Benjamin-Cummings, 1978Google Scholar
  23. 23.
    Arnold, V.: Mathematical Foundations of Classical Mechanics, 2nd edition, Berlin: Springer-Verlag, 1987Google Scholar
  24. 24.
    Saunders, D.J.: The Geometry of Jet Bundles, Cambridge: Cambridge University Press, 1989Google Scholar
  25. 25.
    Palais, R.: Foundations of Non-Linear Global Analysis. Reading, MA: Benjamin-Cummings, 1968Google Scholar
  26. 26.
    Kolář, I., Michor, P.W., Slovák, J.: Natural Operations in Differential Geometry. Berlin: Springer-Verlag, 1993Google Scholar
  27. 27.
    Marsden, J.E., Patrick, G.W., Shkoller, S.: Multisymplectic Geometry, Variational Integrators and Nonlinear PDEs. Commun. Math. Phys. 199, 351–395 (1998)Google Scholar
  28. 28.
    Wald, R.M.: General Relativity. Chicago, IL: Chicago University Press, 1984Google Scholar
  29. 29.
    Barnich, G., Henneaux, M., Schomblond, C.: Covariant Description of the Canonical Formalism. Phys. Rev. D 44, R939–R941 (1991)Google Scholar
  30. 30.
    Christodoulou, D.: The Notion of Hyperbolicity for Systems of Euler-Lagrange Equations. In: B. Fiedler, K. Gröger, J. Sprekels (eds.), Equadiff99 - Proceedings of the International Conference on Differential Equations, Vol. 1, Singapore: World Scientific, 2000, pp. 327–338Google Scholar
  31. 31.
    Christodoulou, D.: On Hyperbolicity. Contemp. Math. 263, 17–28 (2000)Google Scholar
  32. 32.
    Christodoulou, D.: The Action Principle and Partial Differential Equations. Princeton, NJ: Princeton University Press, 2000Google Scholar
  33. 33.
    Kanatchikov, I.: On Field Theoretic Generalizations of a Poisson Algebra. Rep. Math. Phys. 40, 225–234 (1997)Google Scholar
  34. 34.
    Forger, M. Römer, H.: A Poisson Bracket on Multisymplectic Phase Space. Rep. Math. Phys. 48, 211–218 (2001)Google Scholar
  35. 35.
    Forger, M., Paufler, C., Römer, H.: The Poisson Bracket for Poisson Forms in Multisymplectic Field Theory. Rev. Math. Phys. 15, 705–744 (2003)Google Scholar
  36. 36.
    Forger, M., Paufler, C., Römer, H.: Hamiltonian Multivector Fields and Poisson Forms in Multisymplectic Field Theory. Preprint IME-USP RT-MAP-0402, July 2004, http://arxiv.org/abs/math-ph/0407057, 2004
  37. 37.
    Salles, M.O.: Campos Hamiltonianos e Colchete de Poisson na Teoria Geométrica dos Campos. PhD thesis, IME-USP, June 2004Google Scholar
  38. 38.
    Lang, S.: Differential Manifolds. 2nd edition, Berlin: Springer-Verlag, 1985Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Departamento de Matemática Aplicada, Instituto de Matemática e EstatísticaUniversidade de São PauloSão PauloBrazil
  2. 2.Departamento de MatemáticaUniversidade Federal de ViçosaViçosaBrazil

Personalised recommendations