Communications in Mathematical Physics

, Volume 255, Issue 1, pp 21–32 | Cite as

Provable First-Order Transitions for Nonlinear Vector and Gauge Models with Continuous Symmetries

Article

Abstract

We consider various sufficiently nonlinear vector models of ferromagnets, of nematic liquid crystals and of nonlinear lattice gauge theories with continuous symmetries. We show, employing the method of Reflection Positivity and Chessboard Estimates, that they all exhibit first-order transitions in the temperature, when the nonlinearity parameter is large enough. The results hold in dimension 2 or more for the ferromagnetic models and the RP N −1 liquid crystal models and in dimension 3 or more for the lattice gauge models. In the two-dimensional case our results clarify and solve a recent controversy about the possibility of such transitions. For lattice gauge models our methods provide the first proof of a first-order transition in a model with a continuous gauge symmetry.

Keywords

Gauge Theory Liquid Crystal Gauge Symmetry Nematic Liquid Crystal Vector Model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnold, G., Bunk, B., Lippert, T., Schilling, K.: Compact QED under scrutiny: it’s first order. Nucl. Phys. Proc. Suppl. 119, 864–866 (2003)Google Scholar
  2. 2.
    Alexander, K.S., Chayes, L.: Nonperturbative criteria for Gibbsian uniqueness. Commun. Math. Phys. 189, 447–464 (1997)Google Scholar
  3. 3.
    Alvarez, G., Fort, H.: Phase transitions driven by vortices in two-dimensional superfluids and superconductors: From Kosterlitz-Thouless to first order. Phys. Rev. B 63, p. 132504, (2001)Google Scholar
  4. 4.
    Angelescu, N., Zagrebnov, V.A.: A lattice model of liquid crystals with matrix order parameter. J.Phys. A, Math. Gen. 15, L639–L643 (1982)Google Scholar
  5. 5.
    Biskup, M., Chayes, L.: Rigorous analysis of discontinuous phase transitions via mean-field bounds. Commun. Math. Phys. 238, 53–93 (2003)Google Scholar
  6. 6.
    Blöte, H.W.J., Guo, W.N.: Phase transitions in the two-dimensional O(3) model. Int. J. Mod. Phys. B 16, 1891–1897 (2002)Google Scholar
  7. 7.
    Blöte, H.W.J., Guo, W.N., Hilhorst, H.J.: Phase transition in a Two-Dimensional Heisenberg Model. Phys. Rev. Lett. 88, p. 047203 (2002)Google Scholar
  8. 8.
    Caracciolo, S., Pelissetto, A.: Two-dimensional Heisenberg model with nonlinear interaction. Phys. Rev. E 66, p. 016120 (2002)Google Scholar
  9. 9.
    Creutz, M., Jacobs, L., Rebbi, C.: Monte Carlo computations in lattice gauge theories. Phys. Rep. 95, 201–282 (1983)CrossRefGoogle Scholar
  10. 10.
    Chayes, L.: Discontinuity of the spin-wave stiffness of the two-dimensional XY model. Commun. Math. Phys. 197, 623–640 (1998)Google Scholar
  11. 11.
    Chayes, L.: Private communicationGoogle Scholar
  12. 12.
    Domb, C., Green, M.S.: Phase Transitions and Critical Phenomena, Vol 6, Academic Press, 1976Google Scholar
  13. 13.
    Dobrushin, R.L., Shlosman, S.B.: Absence of breakdown of continuous symmetry in two- dimensional models of statistical physics. Commun. Math. Phys. 42, 31–40 (1975)Google Scholar
  14. 14.
    Dobrushin, R.L., Shlosman, S.B.: Phases corresponding to the local minima of the energy. Selecta Math. Soviet. 1, 317–338 (1981)Google Scholar
  15. 15.
    Domany, E., Schick, M., Swendsen, R.H.: First Order Transition in an XY model with Nearest-Neighbor Interactions. Phys. Rev. Lett. 52, 1535–1538 (1984)Google Scholar
  16. 16.
    van Enter, A.C.D., Shlosman, S.B.: First-Order Transitions for n-Vector models in Two and More Dimensions: Rigorous Proof. Phys. Rev. Lett. 89, p. 285702 (2002)Google Scholar
  17. 17.
    Espriu, D., Tagliacozzo, L.: Compact lattice U(1) and Seiberg-Witten duality. Phys. Lett. B 557, 125–133 (2003)Google Scholar
  18. 18.
    Fernández, R., Fröhlich, J., Sokal, A.D.: Random Walks, Critical Phenomena and Triviality in Quantum Field Theory. Berlin-Heidelberg-New York: Springer, 1992Google Scholar
  19. 19.
    Fröhlich, J., Lieb, E.H.: Phase transitions in anisotropic lattice spin systems. Commun. Math. Phys. 60, 233–267 (1978)Google Scholar
  20. 20.
    Farinas Sanchez, A.I., Paredes R., Berche, V., Berche, B.: Evidence for a topological transition in nematic-to-isotropic phase transition in two dimensions. Phys. Lett. A 308, 461–466 (2003)Google Scholar
  21. 21.
    Fröhlich, J., Spencer, T.: Massless Phases and Symmetry Restoration in Abelian Gauge Theories. Commun. Math. Phys. 83, 411–468 (1983)Google Scholar
  22. 22.
    Georgii, H.-O.: Gibbs Measures and Phase Transitions. Walter de Gruyter (de Gruyter Studies in Mathematics, Vol. 9), Berlin–New York, 1988Google Scholar
  23. 23.
    Georgii, H.-O.: Percolation for Low Energy Clusters and Discrete Symmetry Breaking in Classical Spin Systems. Commun. Math. Phys. 81, 455–473 (1981)Google Scholar
  24. 24.
    Georgii, H.-O., Häggström, O., Maes, C.: The random geometry of equilibrium phases. Phase transitions and critical phenomena, C. Domb, J.L. Lebowitz, eds., London, Academic Press, to appearGoogle Scholar
  25. 25.
    Di Giacomo, A.: Investigating QCD Vacuum on the lattice. Nucl. Phys. Proc. Suppl. 108, 21–28 (2002)Google Scholar
  26. 26.
    Guth, A.H.: Existence proof of a nonconfining phase in four-dimensional U(1) lattice gauge theory. Phys. Rev. D 21, 2291–2307 (1980)Google Scholar
  27. 27.
    van Himbergen, J.E.: From continuous to first-order transition in a simple XY model. Phys. Rev. Lett. 53, 5–8 (1984)Google Scholar
  28. 28.
    Ioffe, D., Shlosman, S.B., Velenik, Y.: 2D Models of Statistical Physics with Continuous Symmetry: The Case of Singular Interactions. Commun. Math. Phys. 226, 433–454 (2002)Google Scholar
  29. 29.
    Jonsson, A., Minnhagen, P., Nýlen, M.: New critical point for two-dimensional XY-type models. Phys. Rev. Lett. 70, 1327–1330 (1993)Google Scholar
  30. 30.
    Knops, H.J.F.: First-Order transition in the XY model. Phys. Rev. B 30, 470–472 (1984)Google Scholar
  31. 31.
    Kotecký, R., Shlosman, S.B.: First-order transitions in large entropy lattice models. Comm. Math. Phys. 83, 493–515 (1982)Google Scholar
  32. 32.
    Kotecký, R., Laanait, L., Messager, A., Ruiz, J.: The q-state Potts model in the standard Pirogov-Sinai Theory: surface tensions and Wilson loops. J. Stat. Phys. 58, 199–248 (1990)Google Scholar
  33. 33.
    Kunz, H., Zumbach, G.: First-order phase transitions in the two- and three-dimensional RPn-1 and CPn-1 models, in the large-n limit. J. Phys. A, Math. Gen. 22, L1043–L1048 (1982)Google Scholar
  34. 34.
    Kunz, H., Zumbach, G.: Topological phase transitions in a two-dimensional nematic n-vector model: A numerical study. Phys. Rev. B 46, 662–673 (1992)Google Scholar
  35. 35.
    Laanait, L., Messager, A., Ruiz, J.: Discontinuity of the Wilson string tension in the 4-dimensional lattice pure gauge model. Commun. Math. Phys. 126, 103–131 (1989)Google Scholar
  36. 36.
    Lasher, G.: Monte Carlo Results for a Discrete-Lattice Model of Nematic Ordering. Phys. Rev. A 5, 1350–1354 (1972)Google Scholar
  37. 37.
    Lebwohl, P.A., Lasher, G.: Nematic-Liquid-Crystal Order-A Monte Carlo Calculation. Phys. Rev. A 6, 426–429 (1972) and 7, p. 2222 (1973)CrossRefGoogle Scholar
  38. 38.
    Magistrali, D.: Master’s thesis, Pavia, 2002Google Scholar
  39. 39.
    Mermin, N.D., Wagner, H.: Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Heisenberg Models. Phys. Rev. Lett. 17, 1133–136 (1966)Google Scholar
  40. 40.
    Mila, F.: First-order versus Kosterlitz-Thouless transition in a class of modified XY models. Phys. Rev. B 47, 442–445 (1993)Google Scholar
  41. 41.
    Mondal, E., Roy, S.K.: Finite-size scaling in the planar Lebwohl-Lasher model. Phys. Lett. A 312, 397–410 (2003)Google Scholar
  42. 42.
    Patrascioiu, A., Seiler, E.: The Difference between Abelian and Non-Abelian Models: Fact and Fancy. http://arxiv.org/abs/math.ph/9903038, 1999
  43. 43.
    Pecherski, E.A., Shlosman, S.B.: Low-temperature phase transitions in systems with one ground state. Theor. Math. Phys. 70, 325–330 (1987)Google Scholar
  44. 44.
    Peskin, M.: Mandelstam-’t Hooft duality in abelian lattice models. Ann. Phys. 113, 122–152 (1978)Google Scholar
  45. 45.
    Priezjev, N., Pelcovits, R.A.: Cluster Monte Carlo Simulations of the Nematic-Isotropic Transition. Phys. Rev. E 63, 062702 (2001)Google Scholar
  46. 46.
    Priezjev, N., Pelcovits, R.A.: Disclination loop behavior near the nematic-isotropic transition. Phys. Rev. E 64, 031710 (2001)Google Scholar
  47. 47.
    Pal, A., Roy, S.K.: Monte Carlo simulation of a planar lattice model with P4 interactions. Phys. Rev. E 67, 011705 (2003)Google Scholar
  48. 48.
    Romano, S.: Computer simulation study of a nematogenic lattice-gas model with fourth-rank interactions. Int.J.Mod. Phys. B 16, 2901–2915 (2002)Google Scholar
  49. 49.
    Savit, R.: Topological Excitations in U(1) Invariant Theories. Phys. Rev. Lett. 39, 55–58 (1977)Google Scholar
  50. 50.
    Seuss, Dr.: The Cat in the Hat Comes Back. New York: Random House, 1958Google Scholar
  51. 51.
    Shlosman, S.B.: The method of reflection positivity in the mathematical theory of first-order phase transitions. Russ. Math. Surv. 41, 83–145 (1986)Google Scholar
  52. 52.
    Shukla, P., Sluckin, T.J.: Renormalisation group study of a lattice model for the isotropic-nematic transition. J. Phys. A 18, 93–100 (1985)Google Scholar
  53. 53.
    Smit, J.: Introduction to quantum fields on a lattice. Cambridge Lecture Notes in Physics 15, Cambridge: CUP, 2002. See in particular Chapters 4 and 5Google Scholar
  54. 54.
    Sokal, A.D., Starinets, A.O.: Pathologies of the large-N limit for RPN-1, CPN-1, QPN-1 and mixed isovector/ isotensor sigma-models. Nucl. Phys. B 601, 425–502 (2001)Google Scholar
  55. 55.
    Solomon, S.: Vortices and phase transitions in nonabelian spin models. Phys. Lett. B 100, 492–496 (1981)Google Scholar
  56. 56.
    Tchernyshyov, O., Sondhi, S.L.: Liquid-gas and other unusual thermal phase transitions in some large-N magnets. Nucl. Phys. B 639, 429–449 (2002)Google Scholar
  57. 57.
    van Enter, A.C.D., Fernández, R., Sokal, A.D.: Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory. J. Stat. Phys. 72, 879–1167 (1993)Google Scholar
  58. 58.
    Woldemariam, H.: Augsburg master thesis, 2000Google Scholar
  59. 59.
    Zinn-Justin, J.: Quantum Field Theory and Critical Phenomena, 4th edition. Oxford: Clarendon Press, 2002Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Centre for Theoretical PhysicsRijksuniversiteit GroningenGroningenThe Netherlands
  2. 2.CPT, CNRS Luminy, Case 907Marseille Cedex 9France
  3. 3.IITP, RASMoscowRussia

Personalised recommendations