Communications in Mathematical Physics

, Volume 255, Issue 2, pp 469–512 | Cite as

Higher-Level Appell Functions, Modular Transformations, and Characters

  • A.M. Semikhatov
  • A. Taorimina
  • I.Yu. Tipunin
Article

Abstract

We study modular transformation properties of a class of indefinite theta series involved in characters of infinite-dimensional Lie superalgebras. The level-ℓ Appell functions Open image in new window satisfy open quasiperiodicity relations with additive theta-function terms emerging in translating by the “period.” Generalizing the well-known interpretation of theta functions as sections of line bundles, the Open image in new window function enters the construction of a section of a rank-(ℓ+1) bundle Open image in new window . We evaluate modular transformations of the Open image in new window functions and construct the action of an SL(2,ℤ) subgroup that leaves the section of Open image in new window constructed from Open image in new window invariant.

Modular transformation properties of Open image in new window are applied to the affine Lie superalgebra Open image in new window at a rational level k>−1 and to the N=2 super-Virasoro algebra, to derive modular transformations of “admissible” characters, which are not periodic under the spectral flow and cannot therefore be rationally expressed through theta functions. This gives an example where constructing a modular group action involves extensions among representations in a nonrational conformal model.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Moore, G., Seiberg, N.: Lectures on RCFT. In: Physics, Geometry, and Topology, RU-89-32, Trieste Spring School 1989, London: Plenum, 1990, pp. 263Google Scholar
  2. 2.
    Verlinde, E.: Fusion rules and modular transformations in 2D conformal field theory. Nucl. Phys. B300, 360 (1988)Google Scholar
  3. 3.
    Gannon, T.: Modular data: the algebraic combinatorics of conformal field theory. http://arxiv.org/ abs/math.QA/0103044, 2001
  4. 4.
    Bantay, P.: The kernel of the modular representation and the Galois action in RCFT. Commun. Math. Phys. 233, 423–438 (2003)Google Scholar
  5. 5.
    Bakalov, B., Kirillov, A.A.: Lectures on Tensor Categories and Modular Functors. Providence, RI: AMS, 2000Google Scholar
  6. 6.
    Fuchs, J., Runkel, I., Schweigert, C.: TFT construction of RCFT correlators I: Partition functions. Nucl. Phys. B646, 353–497 (2002)Google Scholar
  7. 7.
    Huang, Y.Z.: Differential equations, duality and modular invariance. http://arxiv.org/ abs/math.QA/0303049, 2003
  8. 8.
    Kač, V.G.: Infinite Dimensional Lie Algebras. Cambridge: Cambridge University Press, 1990Google Scholar
  9. 9.
    Göttsche, L., Zagier, D.: Jacobi forms and the structure of Donaldson invariants for 4-manifolds with b+=1. Selecta Math. 4, 69–115 (1998)Google Scholar
  10. 10.
    Kac, V., Peterson, D.: Infinite-dimensional Lie algebras, theta functions and modular forms. Adv. Math. 53, 125–264 (1984)Google Scholar
  11. 11.
    Kač, V.G., Wakimoto, M.: Integrable highest weight modules over affine superalgebras and number theory. In: “Lie Theory and Geometry,” by J.L. Brylinski, R. Brylinski, V.G. Guillemin, V.Kac, (eds.), Progress in Math. Phys. 123, Basel-Boston: Birkhäuser, 1994, pp. 415–456Google Scholar
  12. 12.
    Polishchuk, A.: Indefinite theta series of signature (1,1) from the point of view of homological mirror symmetry. http://arxiv.org/abs/math.AG/0003076, 2000
  13. 13.
    Semikhatov, A.M., Taormina, A.: Twists and singular vectors in Open image in new window representations. Teor. Mat. Fiz. 128, 474–491 (2001); [Theor. Math. Phys. 128, 1236–1251 (2001)]Google Scholar
  14. 14.
    Feigin, B.L., Semikhatov, A.M., Sirota, V.A., Tipunin, I.Yu.: Resolutions and characters of irreducible representations of the N=2 superconformal algebra. Nucl. Phys. B536, 617–656 (1999)Google Scholar
  15. 15.
    Eguchi, T., Taormina, A.: On the unitary representations of N=2 and N=4 superconformal algebras. Phys. Lett. B210, 125 (1988)Google Scholar
  16. 16.
    Polishchuk, A.: M.P. Appell’s function and vector bundles of rank 2 on elliptic curves. http://arxiv.org/ abs/math.AG/9810084, 1998
  17. 17.
    Kac, V.G., Wakimoto, M.: Integrable highest weight modules over affine superalgebras and Appell’s function. Commun. Math. Phys. 215, 631–682 (2001)Google Scholar
  18. 18.
    Barnes, E.W.: Theory of the double gamma function. Phil. Trans. Roy. Soc. A196, 265–388 (1901)Google Scholar
  19. 19.
    Faddeev, L.D., Kashaev, R.M.: Quantum dilogarithm. Mod. Phys. Lett. A9, 427–434 (1994)Google Scholar
  20. 20.
    Ponsot, B., Teschner, J.: Clebsch–Gordan and Racah–Wigner coefficients for a continuous series of representations of Open image in new window Commun. Math. Phys. 224, 613–655 (2001)Google Scholar
  21. 21.
    Faddeev, L.D., Kashaev, R.M., Volkov, A.Yu.: Strongly coupled quantum discrete Liouville theory. I: Algebraic approach and duality. Commun. Math. Phys. 219, 199–219 (2001)Google Scholar
  22. 22.
    Jimbo, M., Miwa, T.: Quantum KZ equation with |q|=1 and correlation functions of the XXZ model in the gapless regime. J. Phys. A29, 2923–2958 (1996)Google Scholar
  23. 23.
    Kharchev, S., Lebedev, D., Semenov-Tian-Shansky, M.: Unitary representations of Open image in new window the modular double, and the multiparticle q-deformed Toda chains. Commun. Math. Phys. 225, 573–609 (2002)Google Scholar
  24. 24.
    Shiota, T.: Characterization of Jacobian varieties in terms of soliton equations. Invent. Mat. 83, 333–382 (1986)Google Scholar
  25. 25.
    Eholzer, W., Skoruppa, N.-P.: Conformal characters and theta series. Lett. Math. Phys. 35, 197 (1995)Google Scholar
  26. 26.
    Fuchs, J., Hwang, S., Semikhatov, A.M., Tipunin, I.Yu.: Nonsemisimple fusion algebras and the Verlinde formula. Commun. Math. Phys. 247, 713–742 (2004)Google Scholar
  27. 27.
    Schwimmer, A., Seiberg, N.: Comments on the N=2, N=3, N=4 superconformal algebras in two-dimensions. Phys. Lett. B184, 191 (1987)Google Scholar
  28. 28.
    Dong, C.Y., Li, H.S., Mason, G.: Modular invariance of trace functions in orbifold theory. Commun. Math. Phys. 214, 1–56 (2000)Google Scholar
  29. 29.
    Mumford, D.: Tata Lectures on Theta. Basel-Boston: Birkhäuser, 1983, 1984Google Scholar
  30. 30.
    Koblitz, N.: Introduction to Elliptic Curves and Modular Forms. Berlin-Heidelberg-New York: Springer-Verlag, 1984Google Scholar
  31. 31.
    Bowcock, P., Taormina, A.: Representation theory of the affine Lie superalgebra Open image in new window at fractional level. Commun. Math. Phys. 185, 467–493 (1997)Google Scholar
  32. 32.
    Bowcock, P., Hayes, M.R., Taormina, A.: Characters of admissible representations of the affine superalgebra Open image in new window. Nucl. Phys. B510, 739–763 (1998)Google Scholar
  33. 33.
    Bowcock, P., Feigin, B.L., Semikhatov, A.M., Taormina, A.: Open image in new window and Open image in new window as vertex operator extensions of dual affine sℓ(2) algebras. Commun. Math. Phys. 214, 495–545 (2000)Google Scholar
  34. 34.
    Johnstone, G.: Modular transformations and invariants in the context of fractional level affine Open image in new window. Nucl. Phys. 577B, 646–666 (2000)Google Scholar
  35. 35.
    Semikhatov, A.M.: Verma modules, extremal vectors, and singular vectors on the non-critical N=2 string worldsheet. http://arxiv.org/abs/hep-th/9610084, 1996
  36. 36.
    Semikhatov, A.M.: Inverting the Hamiltonian reduction in string theory. Talk at the 28th Symposium on the Theory of Elementary Particles, Wendisch-Rietz, September 1994, http://arxiv.org/abs/hep-th/9410109, 1999
  37. 37.
    Bershadsky, M., Ooguri, H.: Hidden Osp(N,2) symmetries in superconformal field theories. Phys. Lett. B229, 374 (1989)Google Scholar
  38. 38.
    Bershadsky, M., Lerche, W., Nemeschansky, D., Warner, N.P.: Extended N=2 superconformal structure of gravity and W gravity coupled to matter. Nucl. Phys. B401, 304–347 (1993)Google Scholar
  39. 39.
    Ito, K., Kanno, H.: Hamiltonian reduction and topological conformal algebra in c≤1 non-critical strings. Mod. Phys. Lett. A9, 1377 (1994)Google Scholar
  40. 40.
    Zharkov, I.: Theta-functions for indefinite polarizations. http://arxiv.org/abs/math.AG/0011112, 2000
  41. 41.
    Gurarie, V.: Logarithmic operators in conformal field theory. Nucl. Phys. B410, 535 (1993)Google Scholar
  42. 42.
    Gaberdiel, M.R., Kausch, H.G.: Indecomposable fusion products. Nucl. Phys. B477, 293 (1996)Google Scholar
  43. 43.
    Flohr, M.A.I.: Bits and pieces in logarithmic conformal field theory. Int. J. Mod. Phys. A18, 4497–4592 (2003)Google Scholar
  44. 44.
    Gaberdiel, M.R.: An algebraic approach to logarithmic conformal field theory. Int. J. Mod. Phys. A18, 4593–4638 (2003)Google Scholar
  45. 45.
    Kač, V.G., Wakimoto, M.: Modular invariant representations of infinite-dimensional Lie algebras and superalgebras. Proc. Natl. Acad. Sci. USA 85, 4956 (1988)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • A.M. Semikhatov
    • 1
  • A. Taorimina
    • 2
  • I.Yu. Tipunin
    • 1
  1. 1.Tamm Theory Department, Lebedev Physics InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Department of Mathematical SciencesUniversity of Durham, Science LaboratoriesDurhamUnited Kingdom

Personalised recommendations