Communications in Mathematical Physics

, Volume 255, Issue 2, pp 419–467 | Cite as

Supersymmetric Killing Structures

  • Frank Klinker


In this text we combine the notions of supergeometry and supersymmetry. We construct a special class of supermanifolds whose reduced manifolds are (pseudo-) Riemannian manifolds. These supermanifolds allow us to treat vector fields on the one hand and spinor fields on the other hand as equivalent geometric objects. This is the starting point of our definition of supersymmetric Killing structures. The latter combines subspaces of vector fields and spinor fields, provided they fulfill certain field equations. This naturally leads to a superalgebra which extends the supersymmetry algebra to the case of non-flat reduced space. We examine in detail the additional terms which enter into this structure and we give a lot of examples.


Neural Network Manifold Statistical Physic Complex System Vector Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alekseevsky, D.V., Cortes, V.: Classification of N–extended Poincaré algebras and bilinear invariants of the spinor representation of Spin(p,q). Commun. Math. Phys. 183, 477–510 (1997)Google Scholar
  2. 2.
    Alekseevsky, D.V., Cortés, V., Devchand, C., Semmelmann, U.: Killing spinors are Killing vector fields in Riemannian supergeometry. J. Geom. Phys. 26(1–2), 37–50 (1998)Google Scholar
  3. 3.
    Batchelor, M.: The structure of supermanifolds. Trans. Am. Math. Soc. 253, 329–338 (1979)Google Scholar
  4. 4.
    Bérard-Bergery, L., Ikemakhen, A.: Sur l’holonomie des variétés pseudo-Riemanniennes de signature (n,n). (On the holonomy of pseudo-Riemannian manifolds with signature (n,n)).Bull. Soc. Math. Fr. 125(1), 93–114 (1997)Google Scholar
  5. 5.
    Baum, H., Friedrich, T., Grunewald, R., Kath, I.: Twistors and Killing Spinors on Riemannian Manifolds. Teubner-Texte zur Mathematik 124. Stuttgart, etc.: B. G. Teubner Verlagsgesellschaft, 1991Google Scholar
  6. 6.
    Blau, M., Figueroa-O’Farrill, J., Hull, C., Papadopoulos, G.: A new maximally supersymmetric background of IIB superstring theory. J. High Energy Phys. 0201, 047 (2002)Google Scholar
  7. 7.
    Blau, M., Figueroa-O’Farrill, J., Hull, C., Papadopoulos, G.: Penrose limits and maximal supersymmetry. Class. Quant. Grav. 19(10), L87–L95 (2002)Google Scholar
  8. 8.
    Brink, L., Gell-Mann, M., Ramond, P., Schwarz, J.H.: Supergravity as geometry of superspace. Phys. Lett. B 74(4–5), 336–340 (1978)Google Scholar
  9. 9.
    Baum, H., Kath, I.: Parallel spinors and holonomy groups on pseudo-Riemannian spin manifolds. Ann. Global Anal. Geom. 17(1), 1–17 (1999)Google Scholar
  10. 10.
    Bruzzo, U., Pestov, V.: On the structure of DeWitt supermanifolds. J. Geom. Phys. 30(2), 147–168 (1999)Google Scholar
  11. 11.
    Bena, I., Roiban, R.: Supergravity pp–wave solution with 28 and 24 supercharges. Phys. Rev. D67, 125014 (2003)Google Scholar
  12. 12.
    Bryant, R.L.: Pseudo-Riemannian metrics with parallel spinor fields and vanishing Ricci tensor. In: Global analysis and harmonic analysis (Marseille-Luminy, 1999), volume 4 of Sémin. Congr., Paris: Soc. Math. France, 2000, pp. 53–94Google Scholar
  13. 13.
    Coleman, S., Mandula, J.: All possible symmetries of the S–matrix. Phys. Rev. 159, 1251–1256 (1967)Google Scholar
  14. 14.
    DeWitt, B.: Supermanifolds. Cambridge Monographs on Mathematical Physics. Cambridge: Cambridge University Press, second edition, 1992Google Scholar
  15. 15.
    D’Auria, R., Ferrara, S., Lledó, M.A., Varadarajan, V.S.: Spinor algebras. J. Geom. Phys. 40(2), 101–129 (2001)Google Scholar
  16. 16.
    Figueroa-O’Farrill, J.: On the supersymmetries of anti-de Sitter vacua. Class. Quant. Grav. 16(6), 2043–2055 (1999)Google Scholar
  17. 17.
    Figueroa-O’Farrill, J.: Breaking the M-waves. Class. Quant. Grav. 17(15), 2925–2947 (2000)Google Scholar
  18. 18.
    Figueroa-O’Farrill, J., Papadopoulos, G.: Homogeneous fluxes, branes and a maximally supersymmetric solution of M-theory. J. High Energy Phys. 0108, 036 (2001)Google Scholar
  19. 19.
    Green, M.B., Schwarz, J.H., Witten, E.: Superstring theory. Vol. 1; Vol. 2. Cambridge Monographs on Mathematical Physics. Cambridge: Cambridge University Press, Second edition, 1988Google Scholar
  20. 20.
    Gao, Y.-H., Tian, G.: Instantons and the monopole-like equations in eight dimensions. J. High Energy Phys. 0005, 036 (2000)Google Scholar
  21. 21.
    Habermann, K.: The twistor equation on Riemannian manifolds. J. Geom. Phys. 7(4), 469–488 (1990)Google Scholar
  22. 22.
    Hitchin, N.: Harmonic spinors. Adv. Math. 14, 1–55 (1974)zbMATHGoogle Scholar
  23. 23.
    Haag, R., Lopuszański, J.T., Sohnius, M.: All possible generators of supersymmetries of the S-matrix. Nucl. Phys. B 88, 257–274 (1975)Google Scholar
  24. 24.
    Klinker, F.: The spinor bundle of Riemannian products., 2002
  25. 25.
    Klinker, F.: Supersymmetric Killing Structures. PhD thesis, University Leipzig, Germany, 2003Google Scholar
  26. 26.
    Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. Vol. I, II. Wiley Classics Library. New York: John Wiley & Sons Inc., 1996, (Reprint of the 1963, resp. 1969 original, A Wiley-Interscience Publication)Google Scholar
  27. 27.
    Kostant, B.: Graded manifolds, graded Lie theory, and prequantization. In: Differential geometrical methods in mathematical physics (Proc. Sympos., Univ. Bonn, Bonn, 1975), Lecture Notes in Math., Vol. 570. Berlin: Springer, 1977, pp. 177–306Google Scholar
  28. 28.
    Leites, D.A.: Introduction to the theory of supermanifolds. Usp. Mat. Nauk 35(1(211)), 3–57, 255, (1980)Google Scholar
  29. 29.
    Lawson, H.B., Jr., Michelsohn, M.-L.: Spin geometry. Vol. 38 of Princeton Mathematical Series. Princeton, NJ: Princeton University Press, 1989Google Scholar
  30. 30.
    Michelson, J.: A pp–wave with 26 supercharges. Class. Quant. Grav. 19, 5935–5949 (2002)Google Scholar
  31. 31.
    Rogers, A.: A global theory of supermanifolds. J. Math. Phys. 21(6), 1352–1365 (1980)Google Scholar
  32. 32.
    Rogers, A.: Graded manifolds, supermanifolds and infinite-dimensional Grassmann algebras. Commun. Math. Phys. 105(3), 375–384 (1986)Google Scholar
  33. 33.
    Rothstein, M.J.: The axioms of supermanifolds and a new structure arising from them. Trans. Amer. Math. Soc. 297(1), 159–180 (1986)Google Scholar
  34. 34.
    Scherk, J.: Extended supersymmetry and extended supergravity theories. In: Recent Developments in Gravitation, (Cargèse, 1978), NATO Adv. Study Institutes Series, Ser. B, Vol. 44; M. Lévy, S. Deser (eds.), New York: Plenum Press, 1979, pp. 479–517Google Scholar
  35. 35.
    Scheunert, M., Nahm, W., Rittenberg, V.: Classification of all simple graded Lie algebras whose Lie algebra is reductive. I. J. Math. Phys. 17(9), 1626–1639 (1976)Google Scholar
  36. 36.
    Scheunert, M., Nahm, W., Rittenberg, V.: Classification of all simple graded Lie algebras whose Lie algebra is reductive. II. Construction of the exceptional algebras. J. Math. Phys. 17(9), 1640–1644 (1976)Google Scholar
  37. 37.
    Wang, M.Y.: Parallel spinors and parallel forms. Ann. Global Anal. Geom. 7(1), 59–68 (1989)Google Scholar
  38. 38.
    Wess, J., Bagger, J.: Supersymmetry and Supergravity. Princeton Series in Physics IX, Princeton, N.J.: Princeton University Press, 1983Google Scholar
  39. 39.
    Wess, J., Zumino, B.: Supergauge transformations in four dimensions. Nucl. Phys. B70, 39–50 (1974)Google Scholar
  40. 40.
    Wess, J., Zumino, B.: Superspace formulation of supergravity. Phys. Lett. B 66(4), 361–364 (1977)Google Scholar
  41. 41.
    Yagi, K.: Super manifolds. Osaka J. Math. 25(4), 909–932 (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of DortmundDortmundGermany

Personalised recommendations