Advertisement

Communications in Mathematical Physics

, Volume 257, Issue 1, pp 235–256 | Cite as

Generalized Complex Manifolds and Supersymmetry

  • Ulf Lindström
  • Ruben Minasian
  • Alessandro Tomasiello
  • Maxim Zabzine
Article

Abstract

We find a worldsheet realization of generalized complex geometry, a notion introduced recently by Hitchin which interpolates between complex and symplectic manifolds. The two–dimensional model we construct is a supersymmetric relative of the Poisson sigma model used in the context of deformation quantization.

Keywords

Neural Network Manifold Statistical Physic Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hitchin, N.: Generalized Calabi-Yau manifolds. Q. J. Math. 54(3), 281–308 (2003)CrossRefGoogle Scholar
  2. 2.
    Gualtieri, M.: Generalized complex geometry. Oxford University DPhil thesis. http://xxx.lanl.gov/abs/math.DG/0401221, 2004
  3. 3.
    Huybrechts, D.: Generalized Calabi-Yau structures, K3 surfaces, and B-fields. http://arxiv.org/abs/math.AG/0306162, 2003
  4. 4.
    Kapustin, A., Orlov, D.: Vertex algebras, mirror symmetry, and D-branes: The case of complex tori. Commun. Math. Phys. 233, 79 (2003)CrossRefGoogle Scholar
  5. 5.
    Fidanza, S., Minasian, R., Tomasiello, A.: Mirror symmetric SU(3)-structure manifolds with NS fluxes. http://arxiv.org/abs/hep-th/0311122, 2003
  6. 6.
    Vafa, C.: Superstrings and topological strings at large N. J. Math. Phys. 42, 2798 (2001)CrossRefGoogle Scholar
  7. 7.
    Gurrieri, S., Louis, J., Micu, A., Waldram, D.: Mirror symmetry in generalized Calabi-Yau compactifications. Nucl. Phys. B 654, 61 (2003)CrossRefGoogle Scholar
  8. 8.
    Berkovits, N.: Super-Poincare covariant quantization of the superstring. JHEP 0004, 018 (2000)CrossRefGoogle Scholar
  9. 9.
    Lawson, H.B., Michelsohn, M.L.: Spin Geometry. Princeton, NJ: Princeton Univ. Press, 1989Google Scholar
  10. 10.
    Hellerman, S., McGreevy, J., Williams, B.: Geometric constructions of nongeometric string theories. JHEP 0401, 024 (2004)CrossRefGoogle Scholar
  11. 11.
    Flournoy, A., Wecht, B., Williams, B.: Constructing nongeometric vacua in string theory. http://arxiv.org/abs/hep-th/0404217, 2004
  12. 12.
    Lindstrom, U.: Generalized N = (2,2) supersymmetric non-linear sigma models. Phys. Lett. B 587, 216–224 (2004)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Cattaneo, A.S., Felder, G.: A path integral approach to the Kontsevich quantization formula. Commun. Math. Phys. 212, 591 (2000)CrossRefGoogle Scholar
  14. 14.
    Gates, S.J., Hull, C.M., Rocek, M.: Twisted Multiplets And New Supersymmetric Nonlinear Sigma Models. Nucl. Phys. B 248, 157 (1984)Google Scholar
  15. 15.
    Lyakhovich, S., Zabzine, M.: Poisson geometry of sigma models with extended supersymmetry. Phys. Lett. B 548, 243 (2002)Google Scholar
  16. 16.
    Hassan, S.F.: O(D,D:R) Deformations of Complex Structures And Extended World Sheet Supersymmetry. Nucl. Phys. B 454, 86 (1995)Google Scholar
  17. 17.
    Lindstrom, U., Zabzine, M.: N = 2 boundary conditions for non-linear sigma models and Landau-Ginzburg models. JHEP 0302, 006 (2003)Google Scholar
  18. 18.
    Lindstrom, U., Zabzine, M.: D-branes in N = 2 WZW models. Phys. Lett. B 560, 108 (2003)Google Scholar
  19. 19.
    Kapustin, A.: Topological strings on noncommutative manifolds. Int. J. Geom. Meth. Mod. Phys. 1, 49–81 (2004)Google Scholar
  20. 20.
    Grange, P.: Branes as stable holomorphic line bundles on the non-commutative torus. JHEP 0410, 002 (2004)Google Scholar
  21. 21.
    Baulieu, L., Losev, A.S., Nekrasov, N.A.: Target space symmetries in topological theories. I. JHEP 0202, 021 (2002)Google Scholar
  22. 22.
    Seiberg, N., Witten, E.: String theory and noncommutative geometry. JHEP 9909, 032 (1999)CrossRefGoogle Scholar
  23. 23.
    Ikeda, N.: Two-dimensional gravity and nonlinear gauge theory. Ann. Phys. 235, 435 (1994)Google Scholar
  24. 24.
    Schaller, P., Strobl, T.: Poisson structure induced (topological) field theories. Mod. Phys. Lett. A 9, 3129 (1994)Google Scholar
  25. 25.
    Klimcik, C., Strobl, T.: WZW-Poisson manifolds. J. Geom. Phys. 43, 341 (2002)CrossRefGoogle Scholar
  26. 26.
    Courant, T.: Dirac manifolds. Trans. Amer. Math. Soc. 319(2), 631–661 (1990)Google Scholar
  27. 27.
    Courant, T., Weinstein, A. Beyond Poisson structures. In: Action hamiltoniennes de groupes. Troisième théorème de Lie (Lyon, 1986), Travaux en Cours, 27, Paris: Hermann, 1988, pp. 39–49Google Scholar
  28. 28.
    Cavalcanti, G., Gualtieri, M.: Generalized complex structures on nilmanifolds. http://arxiv.org/abs/math.DG/0404451, 2004

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Ulf Lindström
    • 1
    • 2
  • Ruben Minasian
    • 3
  • Alessandro Tomasiello
    • 3
  • Maxim Zabzine
    • 4
    • 5
  1. 1.Department of Theoretical PhysicsUppsala UniversityUppsalaSweden
  2. 2.HIP-Helsinki Institute of PhysicsUniversity of HelsinkiSuomiFinland
  3. 3.Centre de Physique ThéoriqueEcole PolytechniquePalaiseau CedexFrance
  4. 4.LPTHEUniversité Pierre et Marie CurieParis Cedex 05France
  5. 5.Institut Mittag-LefflerDjursholmSweden

Personalised recommendations