Dynamical Yang-Baxter Equation and Quantum Vector Bundles
Article
First Online:
- 93 Downloads
- 13 Citations
Abstract
We develop a categorical approach to the dynamical Yang-Baxter equation (DYBE) for arbitrary Hopf algebras. In particular, we introduce the notion of a dynamical extension of a monoidal category, which provides a natural environment for quantum dynamical R-matrices, dynamical twists, etc. In this context, we define dynamical associative algebras and show that such algebras give quantizations of vector bundles on coadjoint orbits. We build a dynamical twist for any pair of a reductive Lie algebra and its Levi subalgebra. Using this twist, we obtain an equivariant star product quantization of vector bundles on semisimple coadjoint orbits of reductive Lie groups.
Keywords
Vector Bundle Hopf Algebra Associative Algebra Quantum Vector Categorical Approach
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.Avan, J., Babelon, O., Billey, E.: The Gervais-Neveu-Felder equation and the quantum Calogero-Moser systems. Commun. Math. Phys. 178, 281–299 (1996)Google Scholar
- 2.Alekseev, A., Lachowska, A.: Invariant *-product on coadjoint orbits and the Shapovalov pairing. http://arxiv.org/abs/math.QA/0308100, 2003
- 3.Alekseev, A., Meinrenken, E.: The non-commutative Weil algebra. Invent. Math. 135, 135–172 (2000)Google Scholar
- 4.Alekseev, A., Faddeev, L.: T*(G)t: a toy model of conformal field theory. Commun. Math. Phys. 141, 413–422 (1991)Google Scholar
- 5.Balog, J., Dabrowski, L., Fehér, L.: Classical r-matrix and exchange algebra in WZNW and Toda field theories. Phys. Lett. B 244, # 2, 227–234 (1990)Google Scholar
- 6.Drinfeld, V.: Quantum Groups. In Proc. Int. Congress of Mathematicians, Berkeley, 1986, ed. A. V. Gleason, Providence, RI: AMS, (1987), pp. 798–820Google Scholar
- 7.Drinfeld, V.: Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of the classical Yang-Baxter equations. Sov. Math. Dokl. 27, 68–71 (1983)Google Scholar
- 8.Drinfeld, V.: Quasi-Hopf algebras. Leningrad Math.J. 1, 1419–1457 (1990)Google Scholar
- 9.Drinfeld, V.: On Poisson homogeneous spaces of Poisson-Lie groups. Theor. Math. Phys. 95, 226-227 (1993)Google Scholar
- 10.Dolan, B. P., Jahn, O.: Fuzzy Complex Grassmannian Spaces and their Star Products. Int. J. Mod. Phys. A 18, 1935-1958 (2003)Google Scholar
- 11.Donin, J.: Open image in new window
-invariant quantization of coadjoint orbits and vector bundles over them. J. Geom. Phys., 38, #1, 54–80 (2001)Google Scholar - 12.Donin, J.: Quantum G-manifolds. Contemp. Math. 315, 47–60 (2002)Google Scholar
- 13.Donin, J., Gurevich, D., Shnider, S.: Double quantization in some orbits in the coadjoint representiations of simple Lie groups. Commun. Math. Phys. 204, 39–60 (1999)Google Scholar
- 14.Donin, J., Gurevich, D., Shnider, S.: Quantization of function algebras on semisimple orbits in Open image in new window
. http://arxiv.org/abs/q-alg/9607008, 1996 - 15.Donin, J., Mudrov, A.: Method of quantum characters in equivariant quantization. Commun. Math. Phys. 234, 533–555 (2003)Google Scholar
- 16.Donin, J., Mudrov, A.: Explicit equivariant quantization on coadjoint orbits of GL(n). Lett. Math. Phys. 62, 17–32 (2002)Google Scholar
- 17.Donin, J., Mudrov, A.: Reflection Equation, Twist, and Equivariant Quantization. Isr. J. Math. 136, 11–28 (2003)Google Scholar
- 18.Donin, J., Mudrov, A.: Quantum coadjoint orbits of GL(n) and generalized Verma modules. http://arxiv.org/abs/math.QA/0212318, 2002
- 19.Donin, J., Mudrov, A.: Quantum groupoids associated with dynamical categories. http://arxiv.org/abs/math.QA/0311116, 2003
- 20.Donin, J., Ostapenko, V.: Equivariant quantization on quotients of simple Lie groups by reductive subgroups of maximal rank. Czech. J. of Phys. 52, # 11, 1213–1218 (2002)Google Scholar
- 21.Donin, J., Shnider, S.: Quantum symmetric spaces. J. Pure & Applied Alg. 100, 103–116 (1995)Google Scholar
- 22.Enriquez, B., Etingof, P.: Quantization of Alekseev-Meinrenken dynamical r-matrices. Amer. Math. Soc. Transl. 210, # 2, 81–98 (2003)Google Scholar
- 23.Enriquez, B., Etingof, P.: Quantization of classical dynamical r-matrices withnonabelian base. To appear in Commun. Math. Phys., DOI 10.1007/S00220-004-1243-2, 2004Google Scholar
- 24.Etingof, P., Kazhdan, D.: Quantization of Lie bialgebras. Selecta Math. 2, # 1, 1–41 (1996)Google Scholar
- 25.Etingof, P., Schiffmann, O.: Lectures on the dynamical Yang-Baxter equation. Quantum Groups and Lie theory. London Math. Soc. Lecture Note 290, 89–129 (2001)Google Scholar
- 26.Etingof, P., Schiffmann, O.: On the moduli space of classical dynamical r-matrices. Math. Res. Lett. 9, 157–170 (2001)Google Scholar
- 27.Etingof, P., Schiffmann, O., Schedler, T.: Explicit quantization of dynamical r-matrices for finite dimensional semisimple Lie algebras. J.AMS 13, 595–609 (2000)Google Scholar
- 28.Etingof, P., Varchenko, A.: Geometry and classification of solutions of the classical dynamical Yang-Baxter equation. Commun. Math. Phys. 192, 77–120 (1998)Google Scholar
- 29.Etingof, P., Varchenko, A.: Solutions of the quantum dynamical Yang-Baxter equation and dynamical quantum groups. Commun. Math. Phys. 196, 591–640 (1998)Google Scholar
- 30.Etingof, P., Varchenko, A.: Exchange dynamical quantum groups. Commun. Math. Phys. 205, 19–52 (1999)Google Scholar
- 31.Felder, G.: Conformal field theories and integrable models associated to elliptic curves. In: Proc. ICM Zurich, Basel: Birkhäuser, 1994, pp. 1247–1255Google Scholar
- 32.Fehér, L.: Dynamical r-matrices and Poisson-Lie symmetries of the chiral WZNW model. Talkgiven at the workshop on Integrable Theories, Solitens and Duality, IFT Sao Paulo, July 2002, http://arxiv.org/abs/hep-th/0212006, 2002
- 33.Fehér, L., Marshall, I.: On a Poisson-Lie analogue of the classical dynamical Yang-Baxter equation for self dual Lie algebras. Lett. Math. Phys. 62, 51–62 (2002)Google Scholar
- 34.Faddeev, L.: On the exchange matrix of the WZNW model. Commun. Math. Phys. 132, 131–138 (1990)MathSciNetzbMATHGoogle Scholar
- 35.Faddeev, L., Reshetikhin, N., Takhtajan, L.: Quantization of Lie groups and Lie algebras. Leningrad Math. J. 1, 193–226 (1990)MathSciNetzbMATHGoogle Scholar
- 36.Gurevich, D., Leclercq, R., Saponov, P.: q-Index on braided spheres. http://arxic.org/abs/math.QA/0207268, 2002
- 37.Gervais, J.-L., Neveu, A.: Novel triangle relation and absence of tachyons in Liouville string theory. Nucl. Phys. B 238, 125–141 (1984)Google Scholar
- 38.Jantzen, J.-C.: Kontravariante Formen auf induzierten Darstellungen halbeinfacher aa Lie-Algebren. Math. Ann. 226, 53–65 (1977)Google Scholar
- 39.Kassel, Ch.: Quantum groups. NY Springer, 1995.Google Scholar
- 40.Karolinskii, E.: A classification of Poisson homogeneous spaces of complex reductive Poisson-Lie groups. In: Poisson Geometry, J. Grabouski, P. Urbauski (eds.), Banach Center Publ. 51, Warsaw: Banach Center, 2000, pp. 103–108Google Scholar
- 41.Karolinsky, E., Muzykin, K., Stolin, A., Tarasov, V.: Dynamical Yang-Baxter equations, quasi-Poisson homogeneous spaces, and quantization. http://arxiv.org/abs/math.QA/0309203, 2003
- 42.Kulish, P. P., Sklyanin, E. K.: Algebraic structure related to the reflection equation. J. Phys. A 25, 5963–5976 (1992)Google Scholar
- 43.Kulish, P.P., Sasaki, R.: Covariance properties of reflection equation algebras. Prog. Theor. Phys. 89, # 3, 741–761 (1993)Google Scholar
- 44.Lu, J.-H.: Classical dynamical r-matrices and homogeneous Poisson structures on G/H and K/T. Commun. Math. Phys. 212, 337–370 (2000)Google Scholar
- 45.Lu, J.H.: Hopf algebroids and quantum gouppoids. Int. J. Math. 7, 47–70 (1996)Google Scholar
- 46.Ostrik, V.: Module categories, weak Hopf algebras, and modular invariants. Transform. Groups 8, # 2, 177–206 (2003)Google Scholar
- 47.Reshetikhin, N., Semenov-Tian-Shansky, M.: Quantum R-matrices and factorization problem. J. Geom. Phys. 5, 533–550 (1988)Google Scholar
- 48.Schiffmann, O.: On classification of dynamical r-matrices. Math. Res. Lett. 5, 13–30 (1998)Google Scholar
- 49.Semenov-Tian-Shansky, M.: Poisson-Lie Groups, Quantum Duality Principle, and the Quantum Double. Contemp. Math. 175, 219–248 (1994)Google Scholar
- 50.Xu, P.: Triangular dynamical r-matrices and quantization. Adv. Math. 166, 1–49 (2002)Google Scholar
- 51.Xu, P.: Quantum Dynamical Yang-Baxter Equation Over a Nonabelian basis. Commun. Math. Phys. 226, 475–495 (2002)Google Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2005