Communications in Mathematical Physics

, Volume 253, Issue 2, pp 451–480 | Cite as

Elliptic Eigenvalue Problems with Large Drift and Applications to Nonlinear Propagation Phenomena

  • Henri Berestycki
  • François Hamel
  • Nikolai Nadirashvili


This paper is concerned with the asymptotic behaviour of the principal eigenvalue of some linear elliptic equations in the limit of high first-order coefficients. Roughly speaking, one of the main results says that the principal eigenvalue, with Dirichlet boundary conditions, is bounded as the amplitude of the coefficients of the first-order derivatives goes to infinity if and only if the associated dynamical system has a first integral, and the limiting eigenvalue is then determined through the minimization of the Dirichlet functional over all first integrals. A parabolic version of these results, as well as other results for more general equations, are given. Some of the main consequences concern the influence of high advection or drift on the speed of propagation of pulsating travelling fronts.


Advection Asymptotic Behaviour Eigenvalue Problem Elliptic Equation General Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aronson, D.G., Weinberger, H.F.: Multidimensional nonlinear diffusions arising in population genetics. Adv. Math. 30, 33–76 (1978)zbMATHGoogle Scholar
  2. 2.
    Audoly, B., Berestycki, H., Pomeau, Y.: Réaction-diffusion en écoulement stationnaire rapide. C. R. Acad. Sci. Paris 328 II, 255–262 (2000)zbMATHGoogle Scholar
  3. 3.
    Berestycki, H.: The influence of advection on the propagation of fronts in reaction-diffusion equations. In: Nonlinear PDE’s in Condensed Matter and Reactive Flows. H. Berestycki, Y. Pomeau (eds), Dordrecht Kluwer Academic Publ., 2002Google Scholar
  4. 4.
    Berestycki, H., Hamel, F.: Front propagation in periodic excitable media. Commun. Pure Appl. Math. 55, 949–1032 (2002)CrossRefGoogle Scholar
  5. 5.
    Berestycki, H., Hamel, F., Nadirashvili, N.: The speed of propagation for KPP type problems. I-Periodic framework, J. Europ. Math. Soc., in pressGoogle Scholar
  6. 6.
    Berestycki, H., Larrouturou, Lions, P.-L.: Multidimensional traveling-wave solutions of a flame propagation model. Arch. Rat. Mech. Anal. 111, 33–49 (1990)zbMATHGoogle Scholar
  7. 7.
    Berestycki, H., Nirenberg, L.: Travelling fronts in cylinders. Ann. Inst. H. Poincaré, Analyse Non Linéaire 9, 497–572 (1992)Google Scholar
  8. 8.
    Berestycki, H., Nirenberg, L., Varadhan, S.R.S.: The principal eigenvalue and maximum principle for second order elliptic operators in general domains. Commun. Pure Appl. Math. 47, 47–92 (1994)zbMATHGoogle Scholar
  9. 9.
    Capdeboscq, Y.: Homogenization of a neutronic critical diffusion problem with drift. Proc. Royal Soc. Edinburgh 132 A, 567–594 (2002)zbMATHGoogle Scholar
  10. 10.
    Conca, C., Vanninathan, M.: Homogenization of periodic structures via Bloch decomposition. SIAM J. Appl. Math. 57, 1639–1659 (1997)CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Constantin, P., Kiselev, A., Oberman, A., Ryzhik, L.: Bulk burning rate in passive-reactive diffusion. Arch. Ration. Mech. Anal. 154, 53–91 (2000)CrossRefzbMATHGoogle Scholar
  12. 12.
    Constantin, P., Kiselev, A., Ryzhik, L.: Quenching of flames by fluid advection. Commun. Pure Appl. Math. 54, 1320–1342 (2001)CrossRefzbMATHGoogle Scholar
  13. 13.
    Devinatz, A., Ellis, R., Friedman, A.: The asymptotic behaviour of the first real eigenvalue of the second-order elliptic operator with a small parameter in the higher derivatives, II. Indiana Univ. Math. J. 991–1011 (1973/74)Google Scholar
  14. 14.
    Fannjiang, A., Papanicolaou, G.: Convection enhanced diffusion for periodic flows. SIAM J. Appl. Math. 54, 333–408 (1994)zbMATHGoogle Scholar
  15. 15.
    Fife, P.C.: Mathematical aspects of reacting and diffusing systems. Lecture Notes in Biomathematics 28, Berlin-Heidelberg, Newb York: Springer Verlag, 1979Google Scholar
  16. 16.
    Fisher, R.A.: The advance of advantageous genes. Ann. Eugenics 7, 335–369 (1937)Google Scholar
  17. 17.
    Fleming, W.H., Sheu, S.-J.: Asymptotics for the principal eigenvalue and eigenfunction of a nearly first-order operator with large potential. Ann. Probab. 25, 1953–1994 (1997)zbMATHGoogle Scholar
  18. 18.
    Freidlin, M.: Functional integration and partial differential equations. Ann. of Math. Studies, Princeton, NJ: Princeton University Press, 1985Google Scholar
  19. 19.
    Freidlin, M.: Wave front propagation for KPP type equations. Surveys in Appl. Math. 2, New York: Plenum, 1995, pp. 1–62Google Scholar
  20. 20.
    Friedman, A.: The asymptotic behaviour of the first real eigenvalue of a second order elliptic operator with a small parameter in the highest derivatives. Indiana Univ. Math. J. 22, 1005–1015 (1973)zbMATHGoogle Scholar
  21. 21.
    Gärtner, J., Freidlin, M.: On the propagation of concentration waves in periodic and random media. Sov. Math. Dokl. 20, 1282–1286 (1979)Google Scholar
  22. 22.
    Hamel, F.: Formules min-max pour les vitesses d’ondes progressives multidimensionnelles. Ann. Fac. Sci. Toulouse 8, 259–280 (1999)zbMATHGoogle Scholar
  23. 23.
    Heinze, S.: Homogenization of flame fronts. Preprint IWR, Heidelberg, 1993Google Scholar
  24. 24.
    Heinze, S.: Wave solutions for reaction-diffusion systems in perforated domains. Z. Anal. Anwen- dungen 20, 661–670 (2001)zbMATHGoogle Scholar
  25. 25.
    Heinze, S.: The speed of travelling waves for convective reaction-diffusion equations. Preprint MPI, Leipzig, 2001Google Scholar
  26. 26.
    Heinze, S., Papanicolaou, G., Stevens, A.: Variational principles for propagation speeds in in homogeneous media. SIAM J. Appl. Math. 62, 129–148 (2001)CrossRefzbMATHGoogle Scholar
  27. 27.
    Holland, C.J.: A minimum principle for the principal eigenvalue for second-order linear elliptic equations with natural boundary conditions. Commun. Pure Appl. Math. 31, 509–519 (1978)zbMATHGoogle Scholar
  28. 28.
    Hudson, W., Zinner, B.: Existence of travelling waves for reaction-diffusion equations of Fisher type in periodic media. In: Boundary Value Problems for Functional-Differential Equations. J. Henderson (ed.), World Scientific, 1995, pp. 187–199Google Scholar
  29. 29.
    Kanel’, Ya.I.: Certain problems of burning-theory equations. Sov. Math. Dokl. 2, 48–51 (1961)zbMATHGoogle Scholar
  30. 30.
    Kiselev, A., Ryzhik, L.: Enhancement of the traveling front speeds in reaction-diffusion equations with advection. Ann. Inst. H. Poincaré, Analyse Non Linéaire 18, 309–358 (2001)Google Scholar
  31. 31.
    Kolmogorov, A.N., Petrovsky, I.G., Piskunov, N.S.: Étude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Bulletin Université d’État à Moscou (Bjul. Moskowskogo Gos. Univ.), Série internationale A 1, 1–26 (1937)Google Scholar
  32. 32.
    Majda, A.J., Souganidis, P.E.: Large scale front dynamics for turbulent reaction-diffusion equations with separated velocity scales. Nonlinearity 7, 1–30 (1994)Google Scholar
  33. 33.
    Shigesada, N., Kawasaki, K., Teramoto, E.: Spatial segregation of interacting species. J. Theoret. Biol. 79, 83–99 (1979)Google Scholar
  34. 34.
    Volpert, A.I., Volpert, V.A., Volpert, V.A.: Traveling wave solutions of parabolic systems. Translations of Math. Monographs 140, Providence, RI: Am. Math. Soc. 1994Google Scholar
  35. 35.
    Xin, X.: Existence of planar flame fronts in convective-diffusive periodic media. Arch. Ration. Mech. Anal. 121, 205–233 (1992)zbMATHGoogle Scholar
  36. 36.
    Xin, J.X.: Analysis and modeling of front propagation in heterogeneous media. SIAM Review 42, 161–230 (2000)CrossRefzbMATHGoogle Scholar
  37. 37.
    Wentzell, A.D.: On the asymptotic behaviour of the first eigenvalue of a second-order differential operator with small parameter in higher derivatives. Theory Probab. Appl. 20, 599–602 (1975)Google Scholar
  38. 38.
    Wentzell, A.D., Freidlin, M.: Random perturbations of dynamical systems. Grund. Math. Wissen- schaften, Second ed., New York: Springer, 1998Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Henri Berestycki
    • 1
  • François Hamel
    • 2
  • Nikolai Nadirashvili
    • 3
    • 4
  1. 1.EHESS, CAMSParisFrance
  2. 2.Université Aix-Marseille III, LATP, Faculté des Sciences et TechniquesMarseille Cedex 20France
  3. 3.Department of MathematicsUniversity of ChicagoChicagoUSA
  4. 4.CNRS, LATP, CMIMarseille Cedex 13France

Personalised recommendations