Communications in Mathematical Physics

, Volume 256, Issue 1, pp 1–42 | Cite as

Crossed Products of the Cantor Set by Free Minimal Actions of ℤd

Article

Abstract

Let d be a positive integer, let X be the Cantor set, and let ℤd act freely and minimally on X. We prove that the crossed product C*(ℤd,X) has stable rank one, real rank zero, and cancellation of projections, and that the order on K0(C*(ℤd,X)) is determined by traces. We obtain the same conclusion for the C*-algebras of various kinds of aperiodic tilings.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anantharaman-Delaroche, C.: Amenability and exactness for dynamical systems and their C*-algebras. Trans. Am. Math. Soc. 354, 4153–4178 (2002)Google Scholar
  2. 2.
    Archbold, R.J., Spielberg, J.S.: Topologically free actions and ideals in discrete C*-dynamical systems. Proc. Edinburgh Math. Soc. (2) 37, 119–124 (1994)Google Scholar
  3. 3.
    Bellissard, J., Benedetti, R., Gambaudo, J.-M.: Spaces of tilings, finite telescopic approximation and gap labelings. http://arxiv.org/abs/math.DS/0109062, 2001
  4. 4.
    Bellissard, J., Herrmann, D., Zarrouati, M.: Hull of aperiodic solids and gap labelling theorems. In: M.B. Baake, R.V. Moody (eds.), Directions in Mathematical Quasicrystals, CRM Monograph Series Vol. 13, Providence, RI: Amer. Math. Soc., 2000, pp. 207–259Google Scholar
  5. 5.
    Benameur, M., Oyono-Oyono, H.: Calcul du label des gaps pour les quasi-cristaux. C.R. Math. Acad. Sci. Paris. 334, 667–670 (2002)Google Scholar
  6. 6.
    Blackadar, B.: K-Theory for Operator Algebras. MSRI Publication Series 5, New York, Heidelberg, Berlin, Tokyo: Springer-Verlag, 1986Google Scholar
  7. 7.
    Blackadar, B.: Comparison theory for simple C*-algebras. In: D.E. Evans, M. Takesaki (eds.), Operator Algebras and Applications, London Math. Soc. Lecture Notes Series no. 135, Cambridge, New York: Cambridge University Press, 1988, pp. 21–54Google Scholar
  8. 8.
    Bratteli, O., Evans, D.E., Kishimoto, A.: Crossed products of totally disconnected spaces by Open image in new window Ergod. Th. Dynam. Sys. 13, 445–484 (1993)Google Scholar
  9. 9.
    Brown, L.G., Green, P., Rieffel, M.A.: Stable isomorphism and strong Morita equivalence of C*-algebras. Pacific J. Math. 71, 349–363 (1977)Google Scholar
  10. 10.
    Brown, L.G., Pedersen, G.K.: C*-algebras of real rank zero. J. Funct. Anal. 99, 131–149 (1991)Google Scholar
  11. 11.
    Connes, A.: An analogue of the Thom isomorphism for crossed products of a C*-algebra by an action of ℝ. Adv. in Math. 39, 31–55 (1981)MathSciNetMATHGoogle Scholar
  12. 12.
    Cuntz, J.: K-theory for certain C*-algebras. Ann. Math. 113, 181–197 (1981)Google Scholar
  13. 13.
    Dahlberg, B.E.J., Trubowitz, E.: A remark on two-dimensional periodic potentials. Comment. Math. Helv. 57, 130–134 (1982)MATHGoogle Scholar
  14. 14.
    Davidson, K.R.: C*-Algebras by Example. Fields Institute Monographs no. 6, Providence, RI: Amer. Math. Soc., 1996Google Scholar
  15. 15.
    Engelking, R.: Dimension Theory. Oxford, Amsterdam, New York: North-Holland, 1978Google Scholar
  16. 16.
    Forrest, A.: A Bratteli diagram for commuting homeomorphisms of the Cantor set. Int. J. Math. 11, 177–200 (2000)Google Scholar
  17. 17.
    Forrest, A., Hunton, J.: The cohomology and K-theory of commuting homeomorphisms of the Cantor set. Ergod. Th. Dynam. Sys. 19, 611–625 (1999)Google Scholar
  18. 18.
    Forrest, A., Hunton, J., Kellendonk, J.: Topological invariants for projection method patterns. Mem. Amer. Math. Soc. 758, Providence, RI: Amer. Math. Soc. 2002Google Scholar
  19. 19.
    Giordano, T., Putnam, I.F., Skau, C.F.: Affable equivalence relations and orbit structure of Cantor dynamical systems. Ergod. Th. Dynam. Sys. 24, 441–475 (2004)Google Scholar
  20. 20.
    Goodearl, K.R.: Partially Ordered Abelian Groups with Interpolation. Math. Surveys and Monographs no. 20, Providence RI: Amer. Math. Soc., 1986Google Scholar
  21. 21.
    Goodearl, K.R.: Notes on a class of simple C*-algebras with real rank zero. Publ. Mat. (Barcelona) 36, 637–654 (1992)Google Scholar
  22. 22.
    Goodearl, K.: Riesz decomposition in inductive limit C*-algebras. Rocky Mtn. J. Math. 24, 1405–1430 (1994)Google Scholar
  23. 23.
    Haefliger, A.: Groupoids and foliations. In: A. Ramsay, J. Renault (eds.), Groupoids in Analysis, Geometry, and Physics (Boulder, CO, 1999), Contemp. Math. Vol. 282, Providence RI: Amer. Math. Soc. 2001, pp. 83–100Google Scholar
  24. 24.
    Helffer, B., Mohamed, A.: Asymptotic of the density of states for the Schrödinger operator with periodic electric potential. Duke Math. J. 92, 1–60 (1998)Google Scholar
  25. 25.
    Kaminker, J., Putnam, I.: A proof of the gap labeling conjecture. Mich. Math. J. 51, 537–546 (2003)Google Scholar
  26. 26.
    Karpeshina, Y.E.: Perturbation theory for the Schrö dinger operator with a periodic potential. Lecture Notes in Math. no. 1663, Berlin: Springer-Verlag, 1997Google Scholar
  27. 27.
    Kellendonk, J.: The local structure of tilings and their integer group of coinvariants. Commun. Math. Phys. 187, 115–157 (1997)Google Scholar
  28. 28.
    Kellendonk, J., Putnam, I.F.: Tilings, C*-algebras, and K-theory. In: M.B. Baake, R.V. Moody (eds.), Directions in Mathematical Quasicrystals, CRM Monograph Series vol. 13, Providence RI: Amer. Math. Soc. 2000, pp. 177–206Google Scholar
  29. 29.
    Khoshkam, M., Skandalis, G.: Regular representations of groupoids and applications to inverse semigroups. J. Reine Rngew. Math. 546, 47–72 (2002)Google Scholar
  30. 30.
    Lin, H.: Tracially AF C*-algebras. Trans. Am. Math. Soc. 353, 693–722 (2001)Google Scholar
  31. 31.
    Lin, H.: Classification of simple C*-algebras of tracial topological rank zero. Duke Math. J. 125, 91–119 (2004)Google Scholar
  32. 32.
    Matui, H.: AF embeddability of crossed products of AT algebras by the integers and its application. J. Funt. Anal. 192, 562–580 (2002)Google Scholar
  33. 33.
    Moerdijk, I.: Étale groupoids, derived categories, and operations. In: A. Ramsay, J. Renault (eds.), Groupoids in Analysis, Geometry, and Physics (Boulder, CO, 1999), Contemp. Math. vol. 282, Providence RI: Amer. Math. Soc. 2001, pp. 101–114Google Scholar
  34. 34.
    Pasnicu, C.: The ideal property in crossed products. Proc. Am. Math. Soc. 131, 2103–2108 (2003)Google Scholar
  35. 35.
    Pasnicu, C.: Shape equivalence, nonstable K-theory and AH algebras. Pacific J. Math. 192, 159–182 (2000)Google Scholar
  36. 36.
    Pedersen, G.K.: C*-Algebras and their Automorphism Groups. London-New York-San Francisco, Academic Press, 1979Google Scholar
  37. 37.
    Putnam, I.F.: The C*-algebras associated with minimal homeomorphisms of the Cantor set. Pacific J. Math. 136, 329–353 (1989)Google Scholar
  38. 38.
    Putnam, I.F.: On the topological stable rank of certain transformation group C*-algebras. Ergod. Th. Dynam. Sys. 10, 197–207 (1990)Google Scholar
  39. 39.
    Putnam, I.F.: On the K-theory of C*-algebras of principal groupoids. Rocky Mtn. J. Math. 28, 1483–1518 (1998)Google Scholar
  40. 40.
    Putnam, I.F.: The ordered K-theory of C*-algebras associated with substitution tilings. Commun. Math. Phys. 214, 593–605 (2000)Google Scholar
  41. 41.
    Renault, J.: A Groupoid Approach to C*-Algebras. Springer Lecture Notes in Math. no. 793, Berlin, Heidelberg, New York: Springer-Verlag, 1980Google Scholar
  42. 42.
    Rieffel, M.A.: Dimension and stable rank in the K-theory of C*-algebras. Proc. London Math. Soc. Ser. 3 46, 301–333 (1983)Google Scholar
  43. 43.
    Rørdam, M.: On the structure of simple C*-algebras tensored with a UHF-algebra. J. Funct. Anal. 100, 1–17 (1991)Google Scholar
  44. 44.
    Sadun, L., Williams, R.F.: Tiling spaces are Cantor set fiber bundles. Ergod. Th. Dynam. Sys. 23, 307–316 (2003)Google Scholar
  45. 45.
    Sire, C., Gratias, D.: Introduction to the physics of quasicrystals. In: P.E.A. Turchi, A. Gonis (eds.), Statics and Dynamics of Alloy Phase Transformations, NATO ASI Series B: Physics vol. 319, New York: Plenum Press 1994, pp. 127–154Google Scholar
  46. 46.
    Skriganov, M.M.: The spectrum band structure of the three-dimensional Schrödinger operator with periodic potential. Invent. Math. 80, 107–121 (1985)Google Scholar
  47. 47.
    Socolar, J.E.S., Steinhardt, P.J., Levine, D.: Quasicrystals with arbitrary orientational symmetry. Phys. Rev. B 32, 5547–5550 (1985)Google Scholar
  48. 48.
    Zhang, S.: A Riesz decomposition property and ideal structure of multiplier algebras. J. Operator Theory 24, 204–225 (1990)Google Scholar
  49. 49.
    Anderson J.E., Putnam I.F: Topological invariants for substitution tilings and their associated C*-algebras. Ergod. Th. Dynam. Sys. 18, 509–537 (1998)Google Scholar
  50. 50.
    Gähler, F.: Talk at the conference “A periodic Order: Dynamical Systems, Combinatorics, and Operators”, Banff International Research Station, 29 May-3 June 2004Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of OregonEugeneUSA

Personalised recommendations