Advertisement

Communications in Mathematical Physics

, Volume 251, Issue 1, pp 79–131 | Cite as

Partition Function Zeros at First-Order Phase Transitions: A General Analysis

  • M. Biskup
  • C. Borgs
  • J.T. Chayes
  • L.J. Kleinwaks
  • R. Kotecký
Article

Abstract

We present a general, rigorous theory of partition function zeros for lattice spin models depending on one complex parameter. First, we formulate a set of natural assumptions which are verified for a large class of spin models in a companion paper [5]. Under these assumptions, we derive equations whose solutions give the location of the zeros of the partition function with periodic boundary conditions, up to an error which we prove is (generically) exponentially small in the linear size of the system. For asymptotically large systems, the zeros concentrate on phase boundaries which are simple curves ending in multiple points. For models with an Ising-like plus-minus symmetry, we also establish a local version of the Lee-Yang Circle Theorem. This result allows us to control situations when in one region of the complex plane the zeros lie precisely on the unit circle, while in the complement of this region the zeros concentrate on less symmetric curves.

Keywords

Phase Transition Partition Function Unit Circle Periodic Boundary Condition Local Version 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beraha, S., Kahane, J., Weiss, N.J.: Limits of zeroes of recursively defined families of polynomials. In: G.-C. Rota (ed.), Studies in Foundations and Combinatorics (Advances in Mathematics Supplementary Studies, Vol. 1), New York: Academic Press, 1978, pp. 213–232Google Scholar
  2. 2.
    Biskup, M., Borgs, C., Chayes, J.T., Kleinwaks, L.J., Kotecký, R.: General theory of Lee-Yang zeros in models with first-order phase transitions. Phys. Rev. Lett. 84:21, 4794–4797 (2000)Google Scholar
  3. 3.
    Biskup, M., Borgs, C., Chayes, J.T., Kotecký, R.: Phase diagrams of Potts models in external fields: I. Real fields. In preparationGoogle Scholar
  4. 4.
    Biskup, M., Borgs, C., Chayes, J.T., Kotecký, R.: Phase diagrams of Potts models in external fields: II. One complex field. In preparationGoogle Scholar
  5. 5.
    Biskup, M., Borgs, C., Chayes, J.T., Kotecký, R.: Partition function zeros at first-order phase transitions: Pirogov-Sinai theory. J. Stat. Phys. 116, 97–155 (2004)CrossRefGoogle Scholar
  6. 6.
    Borgs, C., Imbrie, J.Z.: A unified approach to phase diagrams in field theory and statistical mechanics. Commun. Math. Phys. 123, 305–328 (1989)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Borgs, C., Kotecký, R.: A rigorous theory of finite-size scaling at first-order phase transitions. J. Statist. Phys. 61, 79–119 (1990)MathSciNetGoogle Scholar
  8. 8.
    Chang, S.-C., Shrock, R.: Ground state entropy of the Potts antiferromagnet on strips of the square lattice. Physica A 290, 402–430 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Chang, S.-C., Shrock, R.: T=0 partition functions for Potts antiferromagnets on lattice strips with fully periodic boundary conditions. Physica A 292, 307–345 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Chen, C.-N., Hu, C.-K., Wu, F.Y.: Partition function zeros of the square lattice Potts model. Phys. Rev. Lett.76, 169–172 (1996)Google Scholar
  11. 11.
    Dobrushin, R.L.: Estimates of semiinvariants for the Ising model at low temperatures. In: R.L. Dobrushin et al. (ed.), Topics in statistical and theoretical physics. F. A. Berezin memorial volume, Transl. Ser. 2, Vol. 177(32), Providence: Am. Math. Soc. (1996) pp. 59–81Google Scholar
  12. 12.
    Doland, B.P., Johnston, D.A.: One dimensional Potts model, Lee-Yang edges, and chaos. Phys. Rev. E 65, 057103 (2002)CrossRefGoogle Scholar
  13. 13.
    Federer, H.: Geometric Measure Theory. Berlin: Springer-Verlag, 1996Google Scholar
  14. 14.
    Fisher, M.E.: The nature of critical points. In: W.E. Brittin (ed.), Lectures in Theoretical Physics, Vol 7c (Statistical physics, weak interactions, field theory), Boulder: University of Colorado Press, 1965, pp. 1–159Google Scholar
  15. 15.
    Friedli, S., Pfister, C.-E.: On the singularity of the free energy at first order phase transitions. Commun. Math. Phys. 245, 69–103 (2004)CrossRefzbMATHGoogle Scholar
  16. 16.
    Gamelin, T.W.: Complex Analysis. Undergraduate Texts in Mathematics, New York: Springer-Verlag, 2001Google Scholar
  17. 17.
    Gibbs, J.W.: Elementary Principles of Statistical Mechanics. In: J.W. Gibbs (ed.), The Collected Works, Vol. II, New Haven, CT: Yale University Press, 1948Google Scholar
  18. 18.
    Glumac, Z., Uzelac, K.: The partition function zeros in the one-dimensional q-state Potts model. J. Phys. A: Math. Gen. 27, 7709–7717 (1994)CrossRefMathSciNetzbMATHGoogle Scholar
  19. 19.
    Isakov, S.N.: Nonanalytic features of the first-order phase transition in the Ising model. Commun. Math. Phys. 95, 427–443 (1984)MathSciNetGoogle Scholar
  20. 20.
    Janke, W., Kenna, R.: Phase transition strengths from the density of partition function zeroes. Nucl. Phys. Proc. Suppl. 106, 905–907 (2002)CrossRefGoogle Scholar
  21. 21.
    Kenna, R., Lang, C.B.: Scaling and density of Lee-Yang zeros in the four-dimensional Ising model. Phys. Rev. E 49, 5012–5017 (1994)CrossRefGoogle Scholar
  22. 22.
    Kim, S.-Y., Creswick, R.J.: Yang-Lee zeros of the q-state Potts model in the complex magnetic field plane. Phys. Rev. Lett. 81, 2000–2003 (1998)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Kotecký, R., Preiss, D.: Cluster expansion for abstract polymer models. Commun. Math. Phys. 103, 491–498 (1986)MathSciNetGoogle Scholar
  24. 24.
    Lee, K.-C.: Generalized circle theorem on zeros of partition functions at asymmetric first-order transitions. Phys. Rev. Lett. 73, 2801–2804 (1994)CrossRefGoogle Scholar
  25. 25.
    Lee, T.D., Yang, C.N.: Statistical theory of equations of state and phase transitions: II. Lattice gas and Ising model. Phys. Rev. 87, 410–419 (1952)CrossRefzbMATHGoogle Scholar
  26. 26.
    Lieb, E.H., Sokal, A.D.: A general Lee-Yang theorem for one-component and multi-component ferromagnets. Commun. Math. Phys. 80, 153–179 (1981)MathSciNetGoogle Scholar
  27. 27.
    Lu, W.T., Wu, F.Y.: Partition function zeroes of a self-dual Ising model. Physica A 258, 157–170 (1998)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Matveev, V., Shrock, R.: Complex-temperature properties of the Ising model on 2D heteropolygonal lattices. J. Phys.A: Math. Gen. 28, 5235–5256 (1995)CrossRefMathSciNetzbMATHGoogle Scholar
  29. 29.
    Matveev, V., Shrock, R.: Some new results on Yang-Lee zeros of the Ising model partition function. Phys. Lett. A 215, 271–279 (1996)CrossRefMathSciNetzbMATHGoogle Scholar
  30. 30.
    Milnor, J.W.: Topology from the Differentiable Viewpoint. Princeton Landmarks in Mathematics, Princeton, NJ: Princeton University Press, 1997Google Scholar
  31. 31.
    Nashimori, H., Griffiths, R.B.: Structure and motion of the Lee-Yang zeros. J. Math. Phys. 24, 2637–2647 (1983)CrossRefGoogle Scholar
  32. 32.
    Newman, C.M.: Zeros of the partition function for generalized Ising systems. Commun. Pure Appl. Math. 27, 143–159 (1974)Google Scholar
  33. 33.
    Pirogov, S.A., Sinai, Ya.G.: Phase diagrams of classical lattice systems. (Russian), Theor. Math. Phys. 25(3), 358–369 (1975)Google Scholar
  34. 34.
    Pirogov, S.A., Sinai, Ya.G.: Phase diagrams of classical lattice systems. Continuation. (Russian), Theor. Math. Phys. 26(1), 61–76 (1976)Google Scholar
  35. 35.
    Ruelle, D.: Extension of the Lee-Yang circle theorem. Phys. Rev. Lett. 26, 303–304 (1971)CrossRefGoogle Scholar
  36. 36.
    van Saarloos, W., Kurtze, D.A.: Location of zeros in the complex temperature plane: Absence of Lee-Yang theorem. J. Phys. A: Math. Gen. 18, 1301–1311 (1984)CrossRefGoogle Scholar
  37. 37.
    Salas, J., Sokal, A.D.: Transfer matrices and partition-function zeros for antiferromagnetic Potts models. I. General theory and square-lattice chromatic polynomial, J. Stat. Phys. 104(3–4), 609–699 (2001)Google Scholar
  38. 38.
    Shrock, R.: Exact Potts model partition functions on ladder graphs. Physica A 283, 388–446 (2000)CrossRefMathSciNetGoogle Scholar
  39. 39.
    Shrock, R., Tsai, S.-H.: Exact partition functions for Potts antiferromagnets on cyclic lattice strips. Physica A 275, 429–449 (2000)CrossRefMathSciNetGoogle Scholar
  40. 40.
    Sokal, A.D.: Bounds on the complex zeros of (di)chromatic polynomials and Potts-model partition functions. Combin. Probab. Comput. 10(1), 41–77 (2001)zbMATHGoogle Scholar
  41. 41.
    Sokal, A.D.: Chromatic roots are dense in the whole complex plane. Combin. Probab. Comput. 13, 221–261 (2004)CrossRefGoogle Scholar
  42. 42.
    Yang, C.N., Lee, T.D.: Statistical theory of equations of state and phase transitions: I. Theory of condensation. Phys. Rev. 87, 404–409 (1952)CrossRefzbMATHGoogle Scholar
  43. 43.
    Zahradník, M.: An alternate version of Pirogov-Sinai theory. Commun. Math. Phys. 93, 559–581 (1984)MathSciNetGoogle Scholar
  44. 44.
    Zahradník, M.: Analyticity of low-temperature phase diagrams of lattice spin models. J. Stat. Phys. 47, 725–455 (1987)MathSciNetGoogle Scholar

Copyright information

© M. Biskup, C. Borgs, J.T. Chayes, L.J. Kleinwaks, R. Kotecký 2003

Authors and Affiliations

  • M. Biskup
    • 1
  • C. Borgs
    • 2
  • J.T. Chayes
    • 2
  • L.J. Kleinwaks
    • 3
  • R. Kotecký
    • 4
  1. 1.Department of MathematicsUCLALos AngelesUSA
  2. 2.Microsoft ResearchOne Microsoft WayRedmondUSA
  3. 3.Department of PhysicsPrinceton UniversityPrincetonUSA
  4. 4.Center for Theoretical StudyCharles UniversityPragueCzech Republic

Personalised recommendations