On Hermitian-Holomorphic Classes Related to Uniformization, the Dilogarithm, and the Liouville Action
Abstract
Metrics of constant negative curvature on a compact Riemann surface are critical points of the Liouville action functional, which in recent constructions is rigorously defined as a class in a Čech-de Rham complex with respect to a suitable covering of the surface. We show that this class is the square of the metrized holomorphic tangent bundle in hermitian-holomorphic Deligne cohomology. We achieve this by introducing a different version of the hermitian-holomorphic Deligne complex which is nevertheless quasi-isomorphic to the one introduced by Brylinski in his construction of Quillen line bundles. We reprove the relation with the determinant of cohomology construction. Furthermore, if we specialize the covering to the one provided by a Kleinian uniformization (thereby allowing possibly disconnected surfaces) the same class can be reinterpreted as the transgression of the regulator class expressed by the Bloch-Wigner dilogarithm.
Keywords
Riemann Surface Line Bundle Tangent Bundle Negative Curvature Compact Riemann SurfacePreview
Unable to display preview. Download preview PDF.
References
- 1.Aldrovandi, E.: Homological algebra of multivalued action functionals. Lett. Math. Phys. 60(1), 47–58 (2002)CrossRefzbMATHGoogle Scholar
- 2.Aldrovandi, E., Takhtajan, L.A.: CFT and effective action for two-dimensional quantum gravity on higher genus Riemann surfaces. Commun. Math. Phys. 188(1), 29–67 (1997)CrossRefzbMATHGoogle Scholar
- 3.Aldrovandi, E., Leon, Takhtajan, A.: Generating functional in CFT on Riemann surfaces. II. Homological aspects. Commun. Math. Phys. 227(2), 303–348 (2002)Google Scholar
- 4.Beilinson, A.A.: Higher regulators and values of L-functions. In: Current problems in mathematics, Vol. 24, Itogi Nauki i Tekhniki, Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1984, pp. 181–238Google Scholar
- 5.Beilinson, A.A.: Notes on absolute Hodge cohomology. In: Applications of algebraic K-theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983), Providence, RI: Am. Math. Soc., 1986, pp. 35–68Google Scholar
- 6.Bloch, S.: The dilogarithm and extensions of Lie algebras. In: Algebraic K-theory, Evanston 1980 Proc. Conf., Northwestern Univ., Evanston, Ill., 1980, Berlin: Springer, 1981, pp. 1–23Google Scholar
- 7.Bloch, S.J.: Higher regulators, algebraic K-theory, and zeta functions of elliptic curves. In: CRM Monograph Series, vol. 11, Providence, RI: Am. Math. Soc., 2000Google Scholar
- 8.Bott, R., Tu, L.W.: Differential forms in algebraic topology. Springer-Verlag, New York, 1982Google Scholar
- 9.Brylinski, J.-L., McLaughlin, D.A.: The geometry of degree-4 characteristic classes and of line bundles on loop spaces. II. Duke Math. J. 83(1), 105–139 (1996)zbMATHGoogle Scholar
- 10.Brylinski, J.-L.: Geometric construction of Quillen line bundles. Advances in geometry, Boston, MA: Birkhäuser Boston, 1999, pp. 107–146Google Scholar
- 11.Deligne, P.: Le déterminant de la cohomologie. In: Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985), Contemp. Math., Vol. 67, Providence, RI: Am. Math. Soc., 1987, pp. 93–177Google Scholar
- 12.Deligne, P.: Le symbole modéré. Inst. Hautes Études Sci. Publ. Math. 73, 147–181 (1991)MathSciNetzbMATHGoogle Scholar
- 13.Deligne, P.: Théorie de Hodge. II. Inst. Hautes Études Sci. Publ. Math. 40, 5–57 (1971)zbMATHGoogle Scholar
- 14.Dupont, J.L.: The dilogarithm as a characteristic class for flat bundles. In: Proceedings of the Northwestern conference on cohomology of groups (Evanston, Ill., 1985), Vol. 44, 1987, pp. 137–164Google Scholar
- 15.Dupont, J.L.: Scissors congruences, group homology and characteristic classes. Nankai Tracts in Mathematics, Vol. 1, River Edge, NJ: World Scientific Publishing Co. Inc., 2001Google Scholar
- 16.Dupont, J.L., Sah, C.H.: Scissors congruences. II. J. Pure Appl. Algebra 25(2), 159–195 (1982)CrossRefzbMATHGoogle Scholar
- 17.Esnault, H.: Characteristic classes of flat bundles. Topology 27(3), 323–352 (1988)CrossRefzbMATHGoogle Scholar
- 18.Esnault, H., Viehweg, E.: Deligne-Bei linson cohomology. In: Bei linson’s conjectures on special values of L-functions, Boston, MA: Academic Press, 1988, pp. 43–91Google Scholar
- 19.Friedan, D., Shenker, S.: The analytic geometry of two-dimensional conformal field theory. Nuclear Phys. B 281(3–4), 509–545 (1987)Google Scholar
- 20.Gillet, H., Soulé, C.: Arithmetic Chow groups and differential characters. In: Algebraic K-theory: connections with geometry and topology (Lake Louise, AB, 1987), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol. 279, Dordrecht: Kluwer Acad. Publ., 1989, pp. 29–68Google Scholar
- 21.Goncharov, A.B.: Explicit regulator maps on polylogarithmic motivic complexes. In: Motives, polylogarithms and Hodge theory, Part I, F. Bogomolov, L. Katzarkov (eds.), Cambridge, MA: International press, 2002Google Scholar
- 22.Griffiths, P., Harris, J.: Principles of algebraic geometry. Wiley-Interscience. New York: John Wiley & Sons, 1978Google Scholar
- 23.Hain, R.M.: Classical polylogarithms. Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math., Vol. 55, Providence, RI: Am. Math. Soc., 1994, pp. 3–42Google Scholar
- 24.Krasnov, K.: Holography and Riemann surfaces. Adv. Theor. Math. Phys. 4(4), 929–979 (2000)zbMATHGoogle Scholar
- 25.Lang, S.: Introduction to Arakelov theory. Springer-Verlag, New York, 1988Google Scholar
- 26.Matsuzaki, K., Taniguchi, M.: Hyperbolic manifolds and Kleinian groups. Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 1998, Oxford Science PublicationsGoogle Scholar
- 27.Poincaré, H.: Les fonctions fuchsiennes et l’équation Δ u = eu. J. Math. Pures Appl. 4(5), 137–230 (1898)Google Scholar
- 28.Polyakov, A.M.: Quantum geometry of bosonic strings. Phys. Lett. B 103, 207–210 (1981)CrossRefMathSciNetGoogle Scholar
- 29.Ramakrishnan, D.: A regulator for curves via the Heisenberg group. Bull. Am. Math. Soc. (N.S.) 5(2), 191–195 (1981)zbMATHGoogle Scholar
- 30.Takhtajan, L.A., Teo, L.-P.: Liouville action and Weil-Petersson metric on deformation spaces, global Kleinian reciprocity and holography. Commun. Math. Phys. 239, 183–240 (2003)zbMATHGoogle Scholar
- 31.Weibel, C.A.: An introduction to homological algebra. Cambridge: Cambridge University Press, 1994Google Scholar
- 32.Zograf, P.G.: The Liouville action on moduli spaces, and uniformization of degenerating Riemann surfaces. Leningrad Math. J. 1(4), 941–965 (1990)zbMATHGoogle Scholar
- 33.Zograf, P.G., Takhtadzhyan, L.A.: On the Liouville equation, accessory parameters and the geometry of Teichmüller space for Riemann surfaces of genus 0. Mat. Sb. (N.S.) 132(174)(2), 147–166 (1987)zbMATHGoogle Scholar
- 34.Zograf, P.G., Takhtadzhyan, L.A.: On the uniformization of Riemann surfaces and on the Weil-Petersson metric on the Teichmüller and Schottky spaces. Mat. Sb. (N.S.) 132 (174)(3), 304–321, 444 (1987)zbMATHGoogle Scholar