Communications in Mathematical Physics

, Volume 253, Issue 1, pp 221–252

Dynamical Analysis of Schrödinger Operators with Growing Sparse Potentials



We consider discrete half-line Schrödinger operators H with potentials of the form V(n)=S(n)+Q(n). Here Q is any compactly supported real function, Open image in new window if n=LN and S(n)=0 otherwise, where η ∈ (0,1) and LN is a very fast growing sequence. We study in a rather detailed manner the time-averaged dynamics exp(−itH)ψ for various initial states ψ. In particular, for some ψ we calculate explicitly the “intermittency function” βψ(p) which turns out to be nonconstant. The dynamical results obtained imply that the spectral measure of H has exact Hausdorff dimension η for all boundary conditions, improving the result of Jitomirskaya and Last.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Combes, J.M., Mantica, G.: Fractal dimensions and quantum evolution associated with sparse potential Jacobi matrices. In: Long time behaviour of classical and quantum systems, S. Graffi, A. Martinez (eds.), Series on concrete and appl. math. Vol. 1, Singapore: World Scientific, 2001, pp. 107–123Google Scholar
  2. 2.
    Damanik, D., Tcheremchantsev, S.: Power-law bounds on transfer matrices and quantum dynamics in one dimension. Commun. Math. Phys. 236, 513–534 (2003)MATHGoogle Scholar
  3. 3.
    del Rio, D., Jitomirskaya, S., Last, Y., Simon, B.: Operators with singular continuous spectrum, IV. Hausdorff dimensions, rank-one perturbations, and localization. J. d’Analyse Math. 69, 153–200 (1996)Google Scholar
  4. 4.
    Gordon, A. Ya.: Deterministic potential with a pure point spectrum. Math. Notes 48, 1197–1203 (1990)MathSciNetMATHGoogle Scholar
  5. 5.
    Germinet, F., Kiselev, A., Tcheremchantsev, S.: Transfer matrices and transport for Schrödinger operators. Ann. Inst. Fourier 54 (3), 787–830 (2004)Google Scholar
  6. 6.
    Germinet, F., Klein, A.: Operator kernel estimates for functions of generalized Schrödinger operators. Proc. Amer. Math. Soci. 131, 911–920 (2003)CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    Guarneri, I., Schulz-Baldes, H.: Lower bounds on wave-packet propagation by packing dimensions of spectral measure. Math. Phys. Elec. J. 5, 1 (1999)MATHGoogle Scholar
  8. 8.
    Jitomirskaya, S., Last, Y.: Power-law subordinacy and singular spectra. I. Half-line operators. Acta Math. 183, 171–189 (1999)MATHGoogle Scholar
  9. 9.
    Killip, R., Kiselev, A., Last, Y.: Dynamical upper bounds on wavepacket spreading. Am. J. Math. 125 (5), 1165–1198 (2003)MATHGoogle Scholar
  10. 10.
    Krutikov, D.: Asymptotics of the Fourier transform of the spectral measure for Schrödinger operators with bounded and unbounded sparse potentials. J. Phys. A 35, 6393–6417 (2002)CrossRefMathSciNetMATHGoogle Scholar
  11. 11.
    Krutikov, D., Remling, C.: Schrödinger operators with sparse potentials: asymptotics of the Fourier transform of the spectral measure. Commun. Math. Phys. 223, 509–532 (2001)CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    Last, Y.: Quantum dynamics and decompositions of singular continuous spectrum. J. Funct. Anal. 142, 405–445 (1996)CrossRefGoogle Scholar
  13. 13.
    Pearson, D.B.: Singular continuous measures in scattering theory. Commun. Math. Phys. 60, 13–36 (1978)MATHGoogle Scholar
  14. 14.
    Simon, B.: Operators with singular continuous spectrum, VII. Examples with borderline time decay. Commun. Math. Phys. 176, 713–722 (1996)Google Scholar
  15. 15.
    Simon, B.: Bounded eigenfunctions and absolutely continuous spectra for one-dimensional Schrödinger operators. Proc. Am. Math. Soc. 124, 3361–3369 (1996)CrossRefMathSciNetMATHGoogle Scholar
  16. 16.
    Simon, B., Spencer, T.: Trace class perturbations and the absence of absolutely continuous spectrum. Commun. Math. Phys. 125, 113–126 (1989)MathSciNetMATHGoogle Scholar
  17. 17.
    Simon, B., Stolz, G.: Operators with singular continuous spectrum, V. Sparse potentials. Proc. Am. Math. Soc. 124, 2073–2080 (1996)CrossRefMATHGoogle Scholar
  18. 18.
    Tcheremchantsev, S.: Mixed lower bounds for quantum transport. J. Funct. Anal. 197, 247–282 (2003)CrossRefMathSciNetMATHGoogle Scholar
  19. 19.
    Zlatos, A.: Sparse potentials with fractional Hausdorff dimension. J. Funct. Anal. 207, 216–252 (2004)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  1. 1.UMR 6628-MAPMOUniversité d’OrléansOrléans CedexFrance

Personalised recommendations