Communications in Mathematical Physics

, Volume 251, Issue 1, pp 157–178 | Cite as

Dispersive Estimates for Schrödinger Operators in Dimensions One and Three



We consider L1L estimates for the time evolution of Hamiltonians H=−Δ+V in dimensions d=1 and d=3 with bound Open image in new window We require decay of the potentials but no regularity. In d=1 the decay assumption is ∫(1+|x|)|V(x)|dx<∞, whereas in d=3 it is |V(x)|≤C(1+|x|)−3−.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agmon, S.: Spectral properties of Schrödinger operators and scattering theory. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2(2), 151–218 (1975)Google Scholar
  2. 2.
    Artbazar, G., Yajima, K.: The Lp-continuity of wave operators for one dimensional Schrödinger operators. J. Math. Sci. Univ. Tokyo 7(2), 221–240 (2000)MATHGoogle Scholar
  3. 3.
    Deift, P., Trubowitz, E.: Inverse scattering on the line. Comm. Pure Appl. Math. XXXII, 121–251 (1979)Google Scholar
  4. 4.
    Jensen, A.: Spectral properties of Schrödinger operators and time-decay of the wave functions results in L2(Rm), m≥ 5. Duke Math. J. 47(1), 57–80 (1980)MATHGoogle Scholar
  5. 5.
    Jensen, A.: Spectral properties of Schrödinger operators and time-decay of the wave functions. Results in L2(R4). J. Math. Anal. Appl. 101(2), 397–422 (1984)Google Scholar
  6. 6.
    Jensen, A., Kato, T.: Spectral properties of Schrödinger operators and time-decay of the wave functions. Duke Math. J. 46(3), 583–611 (1979)MATHGoogle Scholar
  7. 7.
    Jensen, A., Nenciu, G.: A unified approach to resolvent expansions at thresholds. Rev. Math. Phys. 13(6), 717–754 (2001)CrossRefMATHGoogle Scholar
  8. 8.
    Journé, J.-L., Soffer, A., Sogge, C.D.: Decay estimates for Schrödinger operators. Comm. Pure Appl. Math. 44(5), 573–604 (1991)Google Scholar
  9. 9.
    Kato, T.: Wave operators and similarity for some non-selfadjoint operators. Math. Ann. 162, 258–279 (1965/1966)Google Scholar
  10. 10.
    Katznelson, Y.: An introduction to harmonic analysis. New York: Dover, 1968Google Scholar
  11. 11.
    Rauch, J.: Local decay of scattering solutions to Schrödinger’s equation. Commun. Math. Phys. 61(2), 149–168 (1978)MATHGoogle Scholar
  12. 12.
    Reed, M., Simon, B.: Methods of modern mathematical physics. IV. Analysis of operators. New York-London: Academic Press [Harcourt Brace Jovanovich, Publishers], 1978Google Scholar
  13. 13.
    Rodnianski, I., Schlag, W.: Time decay for solutions of Schrödinger equations with rough and time-dependent potentials. Invent. Math. 155, 451–513 (2004)CrossRefGoogle Scholar
  14. 14.
    Schlop, W.: Dispersive estimates for Schrödinger operators in dimension two, preprint 2004, to appear in Comm. Math. Phys.Google Scholar
  15. 15.
    Weder, R.: Open image in new window estimates for the Schrödinger equation on the line and inverse scattering for the nonlinear Schrödinger equation with a potential. J. Funct. Anal. 170(1), 37–68 (2000)Google Scholar
  16. 16.
    Weder, R.: The Wk,p-continuity of the Schrödinger wave operators on the line. Commun. Math. Phys. 208(2), 507–520 (1999)CrossRefMATHGoogle Scholar
  17. 17.
    Yajima, K.: The Wk,p-continuity of wave operators for Schrödinger operators. J. Math. Soc. Japan 47(3), 551–581 (1995)MATHGoogle Scholar
  18. 18.
    Yajima, K.: Lp-boundedness of wave operators for two-dimensional Schrödinger operators. Commun. Math. Phys. 208(1), 125–152 (1999)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  1. 1.Division of AstronomyMathematics and PhysicsPasadenaUSA

Personalised recommendations