Communications in Mathematical Physics

, Volume 248, Issue 2, pp 255–268 | Cite as

Neutral Calabi-Yau Structures on Kodaira Manifolds

  • Anna Fino
  • Henrik Pedersen
  • Yat-Sun Poon
  • Marianne Weye Sørensen


We construct neutral Calabi-Yau metrics and hypersymplectic structures on some Kodaira manifolds. Our structures are symmetric with respect to the central tori.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barth, W., Peters, C., Van de Ven, A.: Compact complex surfaces. Berlin-Heidelberg-New York: Springer-Verlag, 1984Google Scholar
  2. 2.
    Benson, C., Gordon, C. S.: Kähler and symplectic structures on nilmanifolds. Topology 27, 513–518 (1988)CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Boyom, N. B.: Models for solvable symplectic Lie groups. Indiana Univ. Math. J. 42, 1149–1168 (1993)MathSciNetMATHGoogle Scholar
  4. 4.
    Boyom, N. B.: Varietes symplectiques affine. Manuscripta Math. 64, 1–33 (1989)MathSciNetMATHGoogle Scholar
  5. 5.
    Bryant, R.: Pseudo-Riemannian metrics with parallel spinor fields and vanishing Ricci tensor. In: Global Analysis and Harmonic Analysis (Marseille-Luminy, 1999) demin Congr. 4, Paris: Soc. Math. France, 2000, pp. 53-94Google Scholar
  6. 6.
    Campana, F.: Remarques sur les groups de Kähler nilpotents. C. R. Acad. Sci. Paris 317, 777–780 (1993)MathSciNetMATHGoogle Scholar
  7. 7.
    de Andres, L. C., Fernandez, M., Gray, A., Mencia, J. J.: Moduli spaces of complex structures on compact four-dimensional nilmanifolds. Boll. Un. Mat. Ital. A (7) 5(3), 381–389 (1991)Google Scholar
  8. 8.
    Dotti, I., Fino, A.: Hypercomplex 8-dimensional nilpotent Lie groups. J. Pure Appl. Algebra 184(1), 41–57 (2003)CrossRefMATHGoogle Scholar
  9. 9.
    Dotti, I., Fino, A.: Hypercomplex nilpotent Lie groups. In: Global Differential Geometry: The Mathematical Legacy of Alfred Gray (Bilbao, 2000), Contemp. Math. 241, Providence, RI: AMS, 2001, pp. 310–314Google Scholar
  10. 10.
    Deligne, P., Griffiths, P., Morgan, J., Sullivan, D.: Real homotopy theory of kähler manifolds. Invent. Math. 29, 245–274 (1975)MATHGoogle Scholar
  11. 11.
    Fernandez, M., Gotay, M. J., Gray, A.: Compact parallelizable four-dimensional symplectic and complex manifolds. Proc. Am. Math. Soc. 103(4), 1209–1212 (1988)MATHGoogle Scholar
  12. 12.
    Fino, A.: Cotangent bundle of hypercomplex 4-dimensional Lie groups. Manuscripta Math. 109(4), 527–541 (2002)CrossRefMATHGoogle Scholar
  13. 13.
    Hasegawa, K.: Minimal models of nilmanifolds. Proc. Am. Math. Soc. 106, 65–71 (1989)MATHGoogle Scholar
  14. 14.
    Hitchin, N. J.: Hypersymplectic quotients, Acta Academiae Scientiarum Tauriensis, Supplemento al numero 124, 169–180 (1990)Google Scholar
  15. 15.
    Hitchin, N. J.: The moduli space of special Lagrangian submanifolds. Dedicated to Ennio De Giorgi. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25(3-4), 503–515 (1997)Google Scholar
  16. 16.
    Hull, C. M.: Actions for (2,1) sigma-models and strings. Nucl. Phys. B 509(2), 252–272 (1998)CrossRefMATHGoogle Scholar
  17. 17.
    Kamada, H.: Neutral hyper-kähler structures on primary Kodaira surfaces. Tsukuba J. Math. 23(2), 321–332 (1999)MATHGoogle Scholar
  18. 18.
    Kodaira, K.: On the structure of compact complex analytic surfaces, I. Am. J. Math. 86, 751–798 (1964)MATHGoogle Scholar
  19. 19.
    Malcev, A. I.: On a class of homogeneous spaces. Reprinted in Am. Math. Soc. Translations, Series 1, 9, 276–307 (1962)Google Scholar
  20. 20.
    Palais, R. S., Stewart, T. E.: Torus bundles over a torus. Proc. Am. Math. Soc. 12, 26–29 (1961)MATHGoogle Scholar
  21. 21.
    Salamon, S.: Complex structures on nilpotent Lie algebras. J. Pure Appl. Algebra 157(2-3), 311–333 (2001)Google Scholar
  22. 22.
    Thurston, W. P.: Some simple examples of symplectic manifolds. Proc. Am. Math. Soc. 55(2), 467–468 (1976)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Anna Fino
    • 1
  • Henrik Pedersen
    • 2
  • Yat-Sun Poon
    • 3
  • Marianne Weye Sørensen
    • 2
  1. 1.Dipartimento di MatematicaUniversità di TorinoTorinoItaly
  2. 2.Institut for Matematik og DatalogiSDU-Odense UniversitetDenmark
  3. 3.Department of MathematicsUniversity of California at RiversideRiversideU.S.A

Personalised recommendations