Communications in Mathematical Physics

, Volume 248, Issue 2, pp 409–427 | Cite as

Well-Posedness for the Dumbbell Model of Polymeric Fluids

  • Weinan E
  • Tiejun Li
  • Pingwen Zhang


The dumbbell model is a coupled hydrodynamic-kinetic model for polymeric fluids in which the configurations of the dumbbells are described by stochastic differential equations. We prove well-posedness of this model by deriving directly a priori estimates on the stochastic model. Our results can be used to analyze stochastic simulation methods such as the ones that are based on Brownian configuration fields.


Differential Equation Stochastic Model Simulation Method Stochastic Differential Equation Stochastic Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bird, R.B., Curtiss, C.F., Armstrong, R.C., Hassager, O.: Dynamics of Polymeric Liquids, Vol. 2: Kinetic Theory. New York: John Wiley, 1987Google Scholar
  2. 2.
    Doi, M., Edwards, S.F.: The theory of polymer dynamics. Oxford: Oxford University Press, 1986Google Scholar
  3. 3.
    E, W., Li, T., Zhang, P.: Convergence of a stochastic method for the modeling of polymeric fluids. Acta Mathematicae Applicatae Sinica, English Series, 18(4), 529–536 (2002)Google Scholar
  4. 4.
    E, W., Li, T., Zhang, P.: Convergence analysis of BCF methods. In preparationGoogle Scholar
  5. 5.
    Guillope, C., Saut, J.C.: Existence results for the flow of viscoelastic fluids with a differnetial costitutive law. Nonlinear Anal. 15, 849–869 (1990)CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Hulsen, M.A., van Heel, A.P.G., van den Brule, B.H.A.A.: Simulation of viscoelastic flows using Brownian configuration fields. J. Non-Newtonian Fluid Mech. 70, 79–101 (1997)CrossRefGoogle Scholar
  7. 7.
    Jourdain, B., Lelièvre, T., Le Bris.: C.L Numerical analysis of micro-macro simulations of polymeric fluid flows: A simple case. Math. Models and Methods in Appl.Sci. 12(9), 1205–1243 (2002)zbMATHGoogle Scholar
  8. 8.
    Jourdain, B., Lelièvre, T., Le Bris, C.: Existence of solution for a micro-macro model of polymeric fluid: The FENE model. J. Funct. Anal. 209, 162–193 (2004)CrossRefzbMATHGoogle Scholar
  9. 9.
    Karatzas, I., Shreve, S.E.: Brownian motion and stochastic calculus (2nd edition), New York: Springer-Verlag, 1991Google Scholar
  10. 10.
    Laso, M., Öttinger, H.C.: Calculation of viscoelastic flow using molecular models: The CONNFFESSIT approach. J. Non-Newtonian Fluid Mech. 47, 1–20 (1993)CrossRefzbMATHGoogle Scholar
  11. 11.
    Li, T., Zhang, H., Zhang, P.: Local existence for the dumbbell model of polymeric fluids. Comm. PDE 29, 903–923 (2004)Google Scholar
  12. 12.
    Li, T., Zhang, P., Zhou, X.: Well-posedness and numerical analysis of stochastic models for liquid crystal polymers. Submitted to Comm. Math. Sci.Google Scholar
  13. 13.
    Lions, P.L., Masmoudi, N.: Global solutions for some Oldroyd models of non-Newtonian flows. Chin. Ann. of Math. 21B, 131–146 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Majda, A.J.: Compressible fluid flow and systems of conservation laws in several space variables. New York: Springer-Verlag, 1984Google Scholar
  15. 15.
    Öttinger, H.C.: Stochastic processes in polymeric liquids. Berlin-Heidelberg-New York: Springer-Verlag, 1996Google Scholar
  16. 16.
    Renardy, M.: Local existence of solutions of the dirichlet initial-boundary value problem for incompressible hypoelastic materials. SIAM J. Math. Anal. 21, 1369–1385 (1990)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Renardy, M.: An existence theorem for model equations resulting from kinetic theories of polymer solutions. SIAM J. Math. Anal. 22, 313–327 (1991)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Weinan E
    • 1
    • 2
  • Tiejun Li
    • 3
  • Pingwen Zhang
    • 3
  1. 1.Department of Mathematics and PACMPrinceton UniversityPrincetonUSA
  2. 2.School of Mathematical SciencesPeking UniversityBeijingP.R. China
  3. 3.LMAM and School of Mathematical SciencesPeking UniversityBeijingP.R. China

Personalised recommendations