Advertisement

Communications in Mathematical Physics

, Volume 248, Issue 2, pp 269–304 | Cite as

Particle Weights and Their Disintegration I

  • Martin PorrmannEmail author
Article

Abstract

The notion of Wigner particles is attached to irreducible unitary representations of the Poincaré group, characterized by parameters m and s of mass and spin, respectively. However, the Lorentz symmetry is broken in theories with long-range interactions, rendering this approach inapplicable (infraparticle problem). A unified treatment of both particles and infraparticles via the concept of particle weights can be given within the framework of local quantum physics. They arise as temporal limits of physical states in the vacuum sector and describe the asymptotic particle content. In this paper their definition and characteristic properties, already presented in [9] and [14], are worked out in detail. The existence of the temporal limits is established by use of suitably defined seminorms which are also essential in proving the characteristic features of particle weights.

Keywords

Physical State Characteristic Feature Characteristic Property Temporal Limit Unitary Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Araki, H., Haag, R.: Collision Cross Sections in Terms of Local Observables. Commun. Math. Phys. 4, 77–91 (1967)Google Scholar
  2. 2.
    Asimow, L., Ellis, A.: Convexity Theory and its Applications in Functional Analysis. London, New York: Academic Press, Inc., 1980Google Scholar
  3. 3.
    Barut, A.O., Raçzka, R.: Theory of Group Representations and Applications. 2nd ed. Warszawa: Państwowe Wydawnictwo Naukowe–Polish Scientific Publishers, 1980Google Scholar
  4. 4.
    Baumgärtel, H., Wollenberg, M.: Causal Nets of Operator Algebras. Berlin: Akademie-Verlag, 1992Google Scholar
  5. 5.
    Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics 1. 2nd ed. New York, Berlin, Heidelberg: Springer-Verlag, 1987Google Scholar
  6. 6.
    Buchholz, D.: On Particles, Infraparticles, and the Problem of Asymptotic Completeness. In: Mebkhout, M., Sénéor, R. (eds.) VIIIth International Congress on Mathematical Physics, Marseille 1986, Singapore: World Scientific, 1987, pp. 381–389Google Scholar
  7. 7.
    Buchholz, D.: Harmonic Analysis of Local Operators. Commun. Math. Phys. 129, 631–641 (1990)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Buchholz, D., Porrmann, M.: How Small is the Phase Space in Quantum Field Theory? Ann. Inst. Henri Poincaré - Physique théorique 52, 237–257 (1990)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Buchholz, D., Porrmann, M., Stein, U.: Dirac versus Wigner: Towards a Universal Particle Concept in Local Quantum Field Theory. Phys. Lett. B267, 377–381 (1991)Google Scholar
  10. 10.
    Dirac, P.A.M.: The Principles of Quantum Mechanics. 4th ed. Oxford: At The Clarendon Press, 1958Google Scholar
  11. 11.
    Dixmier, J.: Von Neumann Algebras. Amsterdam, New York, Oxford: North-Holland Publishing Co., 1981Google Scholar
  12. 12.
    Fell, J.M.G., Doran, R.S.: Representations of *-Algebras, Locally Compact Groups, and Banach *-Algebraic Bundles – Volume 1. San Diego, London: Academic Press, Inc., 1988Google Scholar
  13. 13.
    Fredenhagen, K., Freund, J.: Work in progressGoogle Scholar
  14. 14.
    Haag, R.: Local Quantum Physics. 2nd ed. Berlin, Heidelberg, New York: Springer-Verlag, 1996Google Scholar
  15. 15.
    Haag, R., Kastler, D.: An Algebraic Approach to Quantum Field Theory. J. Math. Phys. 5, 848–861 (1964)zbMATHGoogle Scholar
  16. 16.
    Helgason, S.: Groups and Geometric Analysis. Orlando, London: Academic Press, Inc., 1984Google Scholar
  17. 17.
    Hewitt, E., Ross, K.A.: Abstract Harmonic Analysis II. Berlin, Heidelberg, New York: Springer-Verlag, 1970Google Scholar
  18. 18.
    Hewitt, E., Stromberg, K.: Real and Abstract Analysis. 2nd ed. Berlin, Heidelberg, New York: Springer-Verlag, 1969Google Scholar
  19. 19.
    Jantscher, L.: Distributionen. Berlin, New York: Walter de Gruyter, 1971Google Scholar
  20. 20.
    Jarchow, H.: Locally Convex Spaces. Stuttgart: B. G. Teubner, 1981Google Scholar
  21. 21.
    Kadison, R.V., Ringrose, J.R.: Fundamentals of the Theory of Operator Algebras – Volume I. New York, London: Academic Press, Inc., 1983Google Scholar
  22. 22.
    Köthe, G.: Topological Vector Spaces I. 2nd ed. Berlin, Heidelberg, New York: Springer-Verlag, 1983Google Scholar
  23. 23.
    Nachbin, L.: The Haar Integral. Princeton, New Jersey, Toronto, New York, London: D. Van Nostrand Company, Inc., 1965Google Scholar
  24. 24.
    Pedersen, G.K.: Measure Theory for C* Algebras. Math. Scand. 19, 131–145 (1966)zbMATHGoogle Scholar
  25. 25.
    Pedersen, G.K.: C*-Algebras and their Automorphism Groups. London, New York, San Francisco: Academic Press, Inc., 1979Google Scholar
  26. 26.
    Peressini, A.L.: Ordered Topological Vector Spaces. New York, Evanston, London: Harper & Row Publishers, 1967Google Scholar
  27. 27.
    Porrmann, M.: The Concept of Particle Weights in Local Quantum Field Theory. Ph.D. thesis, Universität Göttingen, 2000. http://arxiv.org/ps_cache/hep-th/pdf/0005/0005057.pdf, 2000Google Scholar
  28. 28.
    Reeh, H., Schlieder, S.: Bemerkungen zur Unitäräquivalenz von Lorentzinvarianten Feldern. Nuovo Cimento 22, 1051–1068 (1961)Google Scholar
  29. 29.
    Schroer, B.: Infrateilchen in der Quantenfeldtheorie. Fortschr. Phys. 11, 1–32 (1963)Google Scholar
  30. 30.
    Takesaki, M.: Theory of Operator Algebras I. New York, Heidelberg, Berlin: Springer-Verlag, 1979Google Scholar
  31. 31.
    Weidmann, J.: Lineare Operatoren in Hilberträumen. Stuttgart: B. G. Teubner, 1976Google Scholar
  32. 32.
    Wigner, E.P.: On Unitary Representations of the Inhomogeneous Lorentz Group. Ann. Math. 40, 149–204 (1939)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  1. 1.II. Institut für Theoretische PhysikUniversität HamburgHamburgGermany

Personalised recommendations