Communications in Mathematical Physics

, Volume 249, Issue 3, pp 511–528

A Maximum Principle Applied to Quasi-Geostrophic Equations

  • Antonio Córdoba
  • Diego Córdoba
Article

Abstract

We study the initial value problem for dissipative 2D Quasi-geostrophic equations proving local existence, global results for small initial data in the super-critical case, decay of Lp-norms and asymptotic behavior of viscosity solution in the critical case. Our proofs are based on a maximum principle valid for more general flows.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baroud, Ch. N., Plapp, B.B., She, Z.-S., Swinney, H.L.: Anomalous self-similarity in a turbulent rapidly rotating fluid. Phys. Rev. Lett. 88, 114501 (2002)CrossRefGoogle Scholar
  2. 2.
    Berselli, L.: Vanishing viscosity limit and long-time behavior for 2D Quasi-geostrophic equations. Indiana Univ. Math. J. 51 (4), 905–930 (2002)MATHGoogle Scholar
  3. 3.
    Chae, D.: The quasi-geostrophic equation in the Triebel-Lizorkin spaces. Nonlinearity 16 (2), 479–495 (2003)CrossRefMATHGoogle Scholar
  4. 4.
    Chae, D., Lee, J.: Global Well-Posedness in the super critical dissipative Quasi-geostrophic equations. Commun. Math. Phys. 233, 297–311 (2003)MATHGoogle Scholar
  5. 5.
    Coifman, R., Meyer, Y.: Au delà des operateurs pseudo-differentiels. Asterisqué 57, Paris: Société Mathmatique de France, 1978, pp. 154Google Scholar
  6. 6.
    Coifman, R., Meyer, Y.: Ondelettes et operateurs. III. (French) [Wavelets and operators. III] Operateurs multilinaires. [Multilinear operators] Actualits Mathmatiques. [Current Mathematical Topics] Paris: Hermann, 1991Google Scholar
  7. 7.
    Constantin, P.: Energy Spectrum of Quasi-geostrophic Turbulence. Phys. Rev. Lett. 89 (18), 1804501–4 (2002)Google Scholar
  8. 8.
    Constantin, P., Cordoba, D., Wu, J.: On the critical dissipative Quasi-geostrophic equation. Indiana Univ. Math. J. 50, 97–107 (2001)MathSciNetMATHGoogle Scholar
  9. 9.
    Constantin, P., Majda, A., Tabak, E.: Formation of strong fronts in the 2-D quasi-geostrophic thermal active scalar. Nonlinearity 7, 1495–1533 (1994)CrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    Constantin, P., Wu, J.: Behavior of solutions of 2D quasi-geostrophic equations. SIAM J. Math. Anal. 30, 937–948 (1999)CrossRefMathSciNetMATHGoogle Scholar
  11. 11.
    Cordoba, D.: Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation. Ann. of Math. 148, 1135–1152 (1998)MathSciNetMATHGoogle Scholar
  12. 12.
    Cordoba, A., Cordoba, D.: A pointwise estimate for fractionary derivatives with applications to P.D.E. Proc. Natl. Acad. Sci. USA 100 (26), 15316–15317 (2003)CrossRefGoogle Scholar
  13. 13.
    Cordoba, D., Fefferman, C.: Growth of solutions for QG and 2D Euler equations. J. Am. Math. Soc. 15 (3), 665–670 (2002)CrossRefMATHGoogle Scholar
  14. 14.
    Dinaburg, E.I., Posvyanskii, V.S., Sinai, Ya.G.: On some approximations of the Quasi-geostrophic equation. Preprint.Google Scholar
  15. 15.
    Held, I., Pierrehumbert, R., Garner, S., Swanson, K.: Surface quasi-geostrophic dynamics. J. Fluid Mech. 282, 1–20 (1995)MathSciNetMATHGoogle Scholar
  16. 16.
    Kato, T., Ponce, G.: Commutators estimates and the Euler and Navier-Stokes equations. Comm. Pure Appl. Math. 41, 891–907 (1988)MathSciNetMATHGoogle Scholar
  17. 17.
    Pedlosky, J.: Geophysical Fluid Dynamics. New York: Springer-Verlag, 1987Google Scholar
  18. 18.
    Resnick, S.: Dynamical problems in nonlinear advective partial differential equations. Ph.D. thesis, University of Chicago, Chicago 1995Google Scholar
  19. 19.
    Schonbek, M.E., Schonbek, T.P.: Asymptotic behavior to dissipative quasi-geostrophic flows. SIAM J. Math. Anal. 35 (2), 357–375 (2003)CrossRefMATHGoogle Scholar
  20. 20.
    Stein, E.: Singular Integrals and Differentiability Properties of Functions. Princeton NJ: Princeton University Press, 1970Google Scholar
  21. 21.
    Stein, E., Zygmund, A.: Boundedness of translation invariant operators on Holder and Lp-spaces. Ann. of Math. 85, 337–349 (1967)MATHGoogle Scholar
  22. 22.
    Wu, J.: Dissipative quasi-geostrophic equations with Lp data. Electronic J. Differ. Eq. 56, 1–13 (2001)Google Scholar
  23. 23.
    Wu, J.: The quasi-geostrophic equations and its two regularizations. Comm. Partial Differ. Eq. 27 (5–6), 1161–1181 (2002)Google Scholar
  24. 24.
    Wu, J.: Inviscid limits and regularity estimates for the solutions of the 2-D dissipative Quasi- geostrophic equations. Indiana Univ. Math. J. 46 (4), 1113–1124 (1997)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Antonio Córdoba
    • 1
  • Diego Córdoba
    • 2
  1. 1.Departamento de MatemáticasUniversidad Autónoma de MadridMadridSpain
  2. 2.Instituto de Matemáticas y Física FundamentalConsejo Superior de Investigaciones CientíficasMadridSpain

Personalised recommendations