Communications in Mathematical Physics

, Volume 249, Issue 3, pp 511–528 | Cite as

A Maximum Principle Applied to Quasi-Geostrophic Equations

  • Antonio Córdoba
  • Diego Córdoba


We study the initial value problem for dissipative 2D Quasi-geostrophic equations proving local existence, global results for small initial data in the super-critical case, decay of L p -norms and asymptotic behavior of viscosity solution in the critical case. Our proofs are based on a maximum principle valid for more general flows.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baroud, Ch. N., Plapp, B.B., She, Z.-S., Swinney, H.L.: Anomalous self-similarity in a turbulent rapidly rotating fluid. Phys. Rev. Lett. 88, 114501 (2002)CrossRefGoogle Scholar
  2. 2.
    Berselli, L.: Vanishing viscosity limit and long-time behavior for 2D Quasi-geostrophic equations. Indiana Univ. Math. J. 51 (4), 905–930 (2002)MATHGoogle Scholar
  3. 3.
    Chae, D.: The quasi-geostrophic equation in the Triebel-Lizorkin spaces. Nonlinearity 16 (2), 479–495 (2003)CrossRefMATHGoogle Scholar
  4. 4.
    Chae, D., Lee, J.: Global Well-Posedness in the super critical dissipative Quasi-geostrophic equations. Commun. Math. Phys. 233, 297–311 (2003)MATHGoogle Scholar
  5. 5.
    Coifman, R., Meyer, Y.: Au delà des operateurs pseudo-differentiels. Asterisqué 57, Paris: Société Mathmatique de France, 1978, pp. 154Google Scholar
  6. 6.
    Coifman, R., Meyer, Y.: Ondelettes et operateurs. III. (French) [Wavelets and operators. III] Operateurs multilinaires. [Multilinear operators] Actualits Mathmatiques. [Current Mathematical Topics] Paris: Hermann, 1991Google Scholar
  7. 7.
    Constantin, P.: Energy Spectrum of Quasi-geostrophic Turbulence. Phys. Rev. Lett. 89 (18), 1804501–4 (2002)Google Scholar
  8. 8.
    Constantin, P., Cordoba, D., Wu, J.: On the critical dissipative Quasi-geostrophic equation. Indiana Univ. Math. J. 50, 97–107 (2001)MathSciNetMATHGoogle Scholar
  9. 9.
    Constantin, P., Majda, A., Tabak, E.: Formation of strong fronts in the 2-D quasi-geostrophic thermal active scalar. Nonlinearity 7, 1495–1533 (1994)CrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    Constantin, P., Wu, J.: Behavior of solutions of 2D quasi-geostrophic equations. SIAM J. Math. Anal. 30, 937–948 (1999)CrossRefMathSciNetMATHGoogle Scholar
  11. 11.
    Cordoba, D.: Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation. Ann. of Math. 148, 1135–1152 (1998)MathSciNetMATHGoogle Scholar
  12. 12.
    Cordoba, A., Cordoba, D.: A pointwise estimate for fractionary derivatives with applications to P.D.E. Proc. Natl. Acad. Sci. USA 100 (26), 15316–15317 (2003)CrossRefGoogle Scholar
  13. 13.
    Cordoba, D., Fefferman, C.: Growth of solutions for QG and 2D Euler equations. J. Am. Math. Soc. 15 (3), 665–670 (2002)CrossRefMATHGoogle Scholar
  14. 14.
    Dinaburg, E.I., Posvyanskii, V.S., Sinai, Ya.G.: On some approximations of the Quasi-geostrophic equation. Preprint.Google Scholar
  15. 15.
    Held, I., Pierrehumbert, R., Garner, S., Swanson, K.: Surface quasi-geostrophic dynamics. J. Fluid Mech. 282, 1–20 (1995)MathSciNetMATHGoogle Scholar
  16. 16.
    Kato, T., Ponce, G.: Commutators estimates and the Euler and Navier-Stokes equations. Comm. Pure Appl. Math. 41, 891–907 (1988)MathSciNetMATHGoogle Scholar
  17. 17.
    Pedlosky, J.: Geophysical Fluid Dynamics. New York: Springer-Verlag, 1987Google Scholar
  18. 18.
    Resnick, S.: Dynamical problems in nonlinear advective partial differential equations. Ph.D. thesis, University of Chicago, Chicago 1995Google Scholar
  19. 19.
    Schonbek, M.E., Schonbek, T.P.: Asymptotic behavior to dissipative quasi-geostrophic flows. SIAM J. Math. Anal. 35 (2), 357–375 (2003)CrossRefMATHGoogle Scholar
  20. 20.
    Stein, E.: Singular Integrals and Differentiability Properties of Functions. Princeton NJ: Princeton University Press, 1970Google Scholar
  21. 21.
    Stein, E., Zygmund, A.: Boundedness of translation invariant operators on Holder and Lp-spaces. Ann. of Math. 85, 337–349 (1967)MATHGoogle Scholar
  22. 22.
    Wu, J.: Dissipative quasi-geostrophic equations with Lp data. Electronic J. Differ. Eq. 56, 1–13 (2001)Google Scholar
  23. 23.
    Wu, J.: The quasi-geostrophic equations and its two regularizations. Comm. Partial Differ. Eq. 27 (5–6), 1161–1181 (2002)Google Scholar
  24. 24.
    Wu, J.: Inviscid limits and regularity estimates for the solutions of the 2-D dissipative Quasi- geostrophic equations. Indiana Univ. Math. J. 46 (4), 1113–1124 (1997)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Antonio Córdoba
    • 1
  • Diego Córdoba
    • 2
  1. 1.Departamento de MatemáticasUniversidad Autónoma de MadridMadridSpain
  2. 2.Instituto de Matemáticas y Física FundamentalConsejo Superior de Investigaciones CientíficasMadridSpain

Personalised recommendations