Communications in Mathematical Physics

, Volume 246, Issue 3, pp 503–541 | Cite as

On the Boltzmann Equation for Diffusively Excited Granular Media

  • I.M. Gamba
  • V. Panferov
  • C. Villani
Article

Abstract

We study the Boltzmann equation for a space-homogeneous gas of inelastic hard spheres, with a diffusive term representing a random background forcing. Under the assumption that the initial datum is a nonnegative L 2 ( N ) function, with bounded mass and kinetic energy (second moment), we prove the existence of a solution to this model, which instantaneously becomes smooth and rapidly decaying. Under a weak additional assumption of bounded third moment, the solution is shown to be unique. We also establish the existence (but not uniqueness) of a stationary solution. In addition we show that the high-velocity tails of both the stationary and time-dependent particle distribution functions are overpopulated with respect to the Maxwellian distribution, as conjectured by previous authors, and we prove pointwise lower estimates for the solutions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arkeryd, L.: On the Boltzmann equation. II. The full initial value problem. Arch. Rational Mech. Anal. 45, 17–34 (1972)MATHGoogle Scholar
  2. 2.
    Benedetto, D., Caglioti, E., Carrillo, J.A., Pulvirenti, M.: A non-Maxwellian steady distribution for one-dimensional granular media. J. Statist. Phys. 91, 979–990 (1998)CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Bizon, C., Shattuck, M.D., Swift, J.B., Swinney, H.L.: Transport coefficients for granular media from molecular dynamics simulations. Phys. Rev. E 60, 4340–4351 (1999), ArXiv:cond-mat/9904132CrossRefGoogle Scholar
  4. 4.
    Bobylev, A.V.: Moment inequalities for the Boltzmann equation and applications to spatially homogeneous problems. J. Statist. Phys. 88, 1183–1214 (1997)MathSciNetMATHGoogle Scholar
  5. 5.
    Bobylev, A.V., Carrillo, J.A., Gamba, I.M.: On some properties of kinetic and hydrodynamic equations for inelastic interactions. J. Statist. Phys. 98, 743–773 (2000)CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    Bobylev, A.V., Cercignani, C.: Moment equations for a granular material in a thermal bath. J. Statist. Phys. 106, 547–567 (2002)CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    Bobylev, A.V., Gamba, I.M., Panferov, V.: Moment inequalities and high-energy tails for the Boltzmann equations with inelastic interactions. In preparationGoogle Scholar
  8. 8.
    Brilliantov, N.V., Poeschel, T.: Granular gases with impact-velocity dependent restitution coefficient. In: Granular Gases, T. Poeschel, S. Luding (eds.), Lecture Notes in Physics, Vol. 564, Berlin: Springer, 2000, pp. 100–124, ArXiv:cond-mat/0204105Google Scholar
  9. 9.
    Carrillo, J.A., Cercignani, C., Gamba, I.M.: Steady states of a Boltzmann equation for driven granular media. Phys. Rev. E (3), 62, 7700–7707 (2000)Google Scholar
  10. 10.
    Cercignani, C.: Recent developments in the mechanics of granular materials. In: Fisica matematica e ingegneria delle strutture, Bologna: Pitagora Editrice, 1995, pp. 119–132Google Scholar
  11. 11.
    Cercignani, C., Illner, R., Stoica, C.: On diffusive equilibria in generalized kinetic theory. J. Statist. Phys. 105, 337–352 (2001)CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    Desvillettes, L.: Some applications of the method of moments for the homogeneous Boltzmann and Kac equations. Arch. Rational Mech. Anal. 123, 387–404 (1993)MathSciNetMATHGoogle Scholar
  13. 13.
    Desvillettes, L., Villani, C.: On the spatially homogeneous Landau equation for hard potentials. I. Existence, uniqueness and smoothness. Comm. Partial Diff. Eqs. 25, 179–259 (2000)Google Scholar
  14. 14.
    Di Blasio, G.: Differentiability of spatially homogeneous solutions of the Boltzmann equation in the non Maxwellian case. Commun. Math. Phys. 38, 331–340 (1974)MATHGoogle Scholar
  15. 15.
    Elmroth, T.: Global boundedness of moments of solutions of the Boltzmann equation for forces of infinite range. Arch. Ra. Mech. Anal. 82, 1–12 (1983)MathSciNetMATHGoogle Scholar
  16. 16.
    Ernst, M.H., Brito, R.: Velocity tails for inelastic Maxwell models (2001), ArXiv:cond-mat/0111093Google Scholar
  17. 17.
    Ernst, M.H., Brito, R.: Scaling solutions of inelastic Boltzmann equations with over-populated high energy tails. J. Stat. Phys., to appear (2002), ArXiv:cond-mat/0112417Google Scholar
  18. 18.
    Gamba, I.M., Panferov, V., Villani, C.: Work in progress Google Scholar
  19. 19.
    Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Vol. 224 of Grundlehren der Mathematischen Wissenschaften, Berlin: Springer-Verlag, second~ed., 1983Google Scholar
  20. 20.
    Goldhirsch, I.: Rapid granular flows: kinetics and hydrodynamics. In: Modeling in applied sciences, Model. Simul. Sci. Eng. Technol., Boston, MA: Birkhäuser Boston, 2000, pp. 21–79Google Scholar
  21. 21.
    Goldshtein, A., Shapiro, M.: Mechanics of collisional motion of granular materials. I. General hydrodynamic equations. J. Fluid Mech. 282, 75–114 (1995)MATHGoogle Scholar
  22. 22.
    Gustafsson, T.: Global L p-properties for the spatially homogeneous Boltzmann equation. Arch. Rational Mech. Anal. 103, 1–38 (1988)MATHGoogle Scholar
  23. 23.
    Jenkins, J.T.: Kinetic theory for nearly elastic spheres. In: Physics of dry granular media (Cargèse, 1997), NATO Adv. Sci. Inst. Ser. E Appl. Sci., 350, Dordrecht: Kluwer Acad. Publ., 1998, pp. 353–369Google Scholar
  24. 24.
    Jenkins, J.T., Richman, M.W.: Grad’s 13-moment system for a dense gas of inelastic spheres. Arch. Rational Mech. Anal. 87, 355–377 (1985)MathSciNetMATHGoogle Scholar
  25. 25.
    Jenkins, J.T., Savage, S.B.: A theory for rapid flow of identical, smooth, nearly elastic, spherical particles. J. Fluid Mech. 130, 187–202 (1983)MATHGoogle Scholar
  26. 26.
    Krapivsky, P.L., Ben-Naim, E.: Multiscaling in infinite dimensional collision processes. Phys. Rev. E 61, R5 (2000), ArXiv:cond-mat/9909176Google Scholar
  27. 27.
    Krapivsky, P.L., Ben-Naim, E.: Nontrivial velocity distributions in inelastic gases. J. Phys. A 35, L147 (2002), ArXiv:cond-mat/0111044Google Scholar
  28. 28.
    Kudrolli, A., Henry, J.: Non-Gaussian velocity distributions in excited granular matter in the absence of clustering. Phys. Rev. E 62, R1489 (2000), ArXiv:cond-mat/0001233Google Scholar
  29. 29.
    Ladyzhenskaya, O., Uraltseva, N., Solonnikov, V.: Linear and quasi-linear equations of parabolic type. Vol. 23 of AMS Translations of Mathematical Monographs, Providence, RI: Am. Math. Soc., 1988Google Scholar
  30. 30.
    Losert, W., Cooper, D., Delour, J., Kudrolli, A., Gollub, J.: Velocity statistics in excited granular media. Chaos 9, 682–690 (1999), ArXiv:cond-mat/9901203CrossRefMATHGoogle Scholar
  31. 31.
    Lu, X.: Conservation of energy, entropy identity, and local stability for the spatially homogeneous Boltzmann equation. J. Stat. Phys. 96, 765–796 (1999)CrossRefMathSciNetMATHGoogle Scholar
  32. 32.
    Mischler, S., Wennberg, B.: On the spatially homogeneous Boltzmann equation. Ann. Inst. H. Poincaré Anal. Non-Linéaire 16, 467–501 (1999)CrossRefMathSciNetMATHGoogle Scholar
  33. 33.
    Moon, S.J., Shattuck, M.D., Swift, J.B.: Velocity distributions and correlations in homogeneously heated granular media. Phys. Rev. E 64, 031303–1–031303–10 (2001) ArXiv:cond-mat/0105322CrossRefGoogle Scholar
  34. 34.
    Mouhot, C., Villani, C.: Regularity theory for the spatially homogeneous Boltzmann equation with cut-off. To appear in Archive for Rational Mechanics and AnalysisGoogle Scholar
  35. 35.
    Povzner, A.J.: On the Boltzmann equation in the kinetic theory of gases. Mat. Sb. (N.S.) 58(100), 65–86 (1962)MATHGoogle Scholar
  36. 36.
    Rouyer, F., Menon, N.: Velocity fluctuations in a homogeneous 2d granular gas in steady state. Phys. Rev. Lett. 85, 3676 (2000)CrossRefGoogle Scholar
  37. 37.
    Umbanhowar, P.B., Melo, F., Swinney, H.L.: Localized excitations in a vertically vibrated granular layer. Nature 382, 793–796 (1996)CrossRefGoogle Scholar
  38. 38.
    van Noije, T., Ernst, M.: Velocity distributions in homogeneously cooling and heated granular fluids. Gran. Matt. 1, 57–8 (1998), ArXiv:cond-mat/9803042CrossRefGoogle Scholar
  39. 39.
    Villani, C.: A survey of mathematical topics in collisional kinetic theory. In: Handbook of Mathematical Fluid Mechanics, Friedlander, S., Serre, D. (eds.), Vol. 1, Amsterdam: Elsevier, 2002, ch. 2Google Scholar
  40. 40.
    Wennberg, B.: Entropy dissipation and moment production for the Boltzmann equation. J. Statist. Phys. 86, 1053–1066 (1997)MathSciNetMATHGoogle Scholar
  41. 41.
    Williams, D.R.M., MacKintosh, F.C.: Driven granular media in one dimension: Correlations and equation of state. Phys. Rev. E 54, 9–12 (1996)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • I.M. Gamba
    • 1
  • V. Panferov
    • 1
    • 3
  • C. Villani
    • 2
  1. 1.Department of MathematicsThe University of Texas at AustinUSA
  2. 2.UMPAENS LyonLyon Cedex 07France
  3. 3.Department of Mathematics and StatisticsUniversity of VictoriaCanada

Personalised recommendations