Communications in Mathematical Physics

, Volume 246, Issue 2, pp 359–374 | Cite as

Structure of States Which Satisfy Strong Subadditivity of Quantum Entropy with Equality

  • Patrick Hayden
  • Richard Jozsa
  • Dénes Petz
  • Andreas Winter
Article

Abstract

We give an explicit characterisation of the quantum states which saturate the strong subadditivity inequality for the von Neumann entropy. By combining a result of Petz characterising the equality case for the monotonicity of relative entropy with a recent theorem by Koashi and Imoto, we show that such states will have the form of a so–called short quantum Markov chain, which in turn implies that two of the systems are independent conditioned on the third, in a physically meaningful sense. This characterisation simultaneously generalises known necessary and sufficient entropic conditions for quantum error correction as well as the conditions for the achievability of the Holevo bound on accessible information.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Accardi, L., Frigerio, A.: Markovian cocycles. Proc. Proc. Roy. Irish Acad. 83A(2), 251–263 (1983)MATHGoogle Scholar
  2. 2.
    Barnum, H., Knill, E.: Reversing quantum dynamics with near–optimal quantum and classical fidelity. J. Math. Phys. 43(5), 2097–2106 (2002)CrossRefGoogle Scholar
  3. 3.
    Barnum, H., Nielsen, M. A., Schumacher, B.: Information transmission through a noisy quantum channel. Phys. Rev. A 57(6), 4153–4175 (1998)CrossRefGoogle Scholar
  4. 4.
    Bratteli, O., Robinson, D. W.: Operator algebras and quantum statistical mechanics. 1. C * - and W * –algebras, symmetry groups, decomposition of states. 2nd ed., Texts and Monographs in Physics, New York: Springer Verlag, 1987Google Scholar
  5. 5.
    Holevo, A. S.: Bounds for the quantity of information transmitted by a quantum channel. Probl. Inf. Transm. 9(3), 177–183 (1973)Google Scholar
  6. 6.
    Horodecki, M., Horodecki, P., Horodecki, R.: Mixed-state entanglement and distillation: Is there a ‘bound’ entanglement in nature?. Phys. Rev. Lett. 80, 5239–5242 (1998)CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    Koashi, M., Imoto, N.: Operations that do not disturb partially known quantum states. Phys. Rev. A 66(2), 022318, (2002)CrossRefGoogle Scholar
  8. 8.
    Kullback, S., Leibler, R. A.: On information and sufficiency. Ann. Math. Statistics, 1951Google Scholar
  9. 9.
    Lieb, E. H., Ruskai, M. B.: Proof of the strong subadditivity of quantum-mechanical entropy. J. Math. Phys. 14, 1938–1941 (1973)CrossRefGoogle Scholar
  10. 10.
    Lindblad, G.: Completely positive maps and entropy inequalities. Commun. Math. Phys.40, 147–151 (1975)Google Scholar
  11. 11.
    Lindblad, G.: Quantum entropy and quantum measurements. In: C. Bendjaballah, O. Hirota, S. Reynaud (eds.), Quantum Aspects of Optical Communications, Lecture Notes in Physics, Vol. 378, Berlin: Springer Verlag, 1991, pp. 71–80Google Scholar
  12. 12.
    Lindblad, G.: A general no–cloning theorem. Lett. Math. Phys. 47, 189–196 (1999)CrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    von Neumann, J.: Thermodynamik quantenmechanischer Gesamtheiten. Nachr. der Gesellschaft der Wiss. Gött., 273–291, (1927). (see also J. von Neumann, Mathematical Foundations of Quantum Mechanics. Princeton, NJ: Princeton University Press, 1996Google Scholar
  14. 14.
    Ohya, M., Petz, D.: Quantum Entropy and Its Use. Texts and Monographs in Physics, Berlin-Heidelberg: Springer Verlag, 1993Google Scholar
  15. 15.
    Petz, D.: Sufficient subalgebras and the relative entropy of states of a von Neumann algebra. Commun. Math. Phys. 105, no. 1, 123–131, 1986. Sufficiency of channels over von Neumann algebras. Quart. J. Math. Oxford Ser. 39(153), 97–108 (1988)Google Scholar
  16. 16.
    Petz, D.: Monotonicity of quantum relative entropy revisited. Rev. Math. Phys. 15, 79–91 (2003)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Ruskai, M. B.: Inequalities for Quantum Entropy: A Review with Conditions for Equality. J. Math. Phys. 43, 4358–4375 (2002)CrossRefGoogle Scholar
  18. 18.
    Schumacher, B., Nielsen, M. A.: Quantum data processing and error correction. Phys. Rev. A. 54, 2629–2635 (1996)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Shannon, C. E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423, 623–656 (1948)MathSciNetGoogle Scholar
  20. 20.
    Shor, P. W.: Additivity of the Classical Capacity of Entanglement–Breaking Quantum Channels. J. Math. Phys. 43, 4334–4340 (2002)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Stinespring, W. F.: Positive functions on C*–algebras. Proc. Am. Math. Soc. 6, 211–216 (1955)MathSciNetMATHGoogle Scholar
  22. 22.
    Takesaki, M.: Theory of Operator Algebras I. New York–Heidelberg–Berlin: Springer–Verlag, 1979Google Scholar
  23. 23.
    Uhlmann, A.: Relative entropy and the Wigner–Yanase–Dyson–Lieb concavity in an interpolation theory. Commun. Math. Phys. 54(1), 21–32 (1977)MATHGoogle Scholar
  24. 24.
    Umegaki, H.: Conditional expectation in an operator algebra IV. Entropy and information. Kōdai Math. Sem. Rep. 14, 59–85 (1962)MATHGoogle Scholar
  25. 25.
    Wehrl, A.: General properties of entropy. Rev. Mod. Phys. 50(2), 221–260 (1978)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Patrick Hayden
    • 1
  • Richard Jozsa
    • 2
  • Dénes Petz
    • 3
  • Andreas Winter
    • 2
    • 4
  1. 1.Institute for Quantum InformationPasadenaUSA
  2. 2.Department of Computer ScienceUniversity of BristolBristolU.K
  3. 3.Department for Mathematical AnalysisMathematical Institute, Budapest University of Technology and EconomicsBudapestHungary
  4. 4.Department of MathematicsUniversity of Bristol, University WalkBristolU.K

Personalised recommendations