Advertisement

Communications in Mathematical Physics

, Volume 246, Issue 3, pp 561–567 | Cite as

Factoriality of Bo ejko–Speicher von Neumann Algebras

  • Piotr Śniady
Article

Abstract

We study the von Neumann algebra generated by q–deformed Gaussian elements l i +l * i , where operators l i fulfill the q–deformed canonical commutation relations l il * j ql * jl i ij for −1<q<1. We show that if the number of generators is finite, greater than some constant depending on q, it is a II 1 factor which does not have the property Γ. Our technique can be used for proving factoriality of many examples of von Neumann algebras arising from some generalized Brownian motions, both for the type II 1 and type III case.

Keywords

Brownian Motion Commutation Relation Canonical Commutation Relation Generalize Brownian Motion Gaussian Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boejko, M., Kümmerer, B., Speicher R.: q-Gaussian processes: non-commutative and classical aspects. Commun. Math. Phys. 185(1), 129–154 (1997)Google Scholar
  2. 2.
    Boejko, M.: Completely positive maps on Coxeter groups and the ultracontractivity of the q-Ornstein-Uhlenbeck semigroup. In: Quantum probability (Gdańsk, 1997), Warsaw: Polish Acad. Sci., 1998, pp. 87–93Google Scholar
  3. 3.
    Boejko, M., Speicher, R.: Completely positive maps on Coxeter groups, deformed commutation relations, and operator spaces. Math. Ann. 300(1), 97–120 (1994)Google Scholar
  4. 4.
    Boejko, M., Xu, Q.: Factoriality and second quantization. Unpublished, 2000Google Scholar
  5. 5.
    Connes, A.: Classification of injective factors. Cases II 1, II , III λ , λ≠1. Ann. of Math. (2), 104(1), 73–115 (1976)Google Scholar
  6. 6.
    Frisch, U., Bourret, R.: Parastochastics. J. Math. Phys. 11, 364–390 (1970)MATHGoogle Scholar
  7. 7.
    Guţă, M., Maassen, H.: Generalised Brownian motion and second quantisation. J. Funct. Anal. 191(2), 241–275 (2002)CrossRefGoogle Scholar
  8. 8.
    Hiai, F.: q-deformed Araki-Woods factors. In J.-M. Combes et~al. (eds.) Operator Algebras and Mathematical Physics, Bucharest: Theta, 2003, pp. 169–202Google Scholar
  9. 9.
    Krolak, I.: Wick product for commutation relations connected with Yang-Baxter operators and new constructions of factors. Commun. Math. Phys. 210(3), 685–701 (2000)MATHGoogle Scholar
  10. 10.
    Nou, A.: Non injectivity of the q–deformed von Neumann algebras. Preprint, 2002Google Scholar
  11. 11.
    Ozawa, N.: Solid von Neumann Algebras. Preprint math.OA/0302082, 2003Google Scholar
  12. 12.
    Shlyakhtenko, D.: Free quasi-free states. Pacific J. Math. 177(2), 329–368 (1997)MATHGoogle Scholar
  13. 13.
    Shlyakhtenko, D.: Some estimates for non-microstates free entropy dimension, with applications to q-semicircular families. Preprint math.OA/0308093, 2003Google Scholar
  14. 14.
    Voiculescu, D. V., Dykema, K. J., Nica, A.: Free random variables. Providence, RI: American Mathematical Society, 1992. A noncommutative probability approach to free products with applications to random matrices, operator algebras and harmonic analysis on free groupsGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  1. 1.Institute of MathematicsUniversity of WroclawWroclawPoland

Personalised recommendations