Communications in Mathematical Physics

, Volume 244, Issue 3, pp 419–453 | Cite as

Exponential Equations Related to the Quantum ‘ax + b’ Group



We study pairs b,β of unbounded selfadjoint operators, satisfying commutation rules inspired by the quantum ‘ax+b’ group [19]: bβ=−βb and β2=id except for kerb, on which β2=0. We find all measurable, unitary-operator valued functions F satisfying the exponential equation: F(b, β)F(d, δ)=F((b, β) (d, δ)), where d, δ satisfy the same commutation rules as b, β, and is modeled after the comultiplication of the quantum ‘ax+b’ group. This result is crucial for classification of all unitary representations of the quantum ‘ax+b’ group, which is achieved in our forthcoming paper [12].


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Connes, A.: Noncommutative Geometry. New York: Academic Press, 1995Google Scholar
  2. 2.
    Dixmier, J.: Les algébres d’operateurs dans l’espace Hilbertien. Paris: Gauthier-Villars, 1969Google Scholar
  3. 3.
    Dunford, N., Schwartz, J.T.: Linear Operators, Part II: Spectral Theory. New York-London: Interscience Publishers, 1963Google Scholar
  4. 4.
    Gadella, M., Gomez, F.: A Unified Mathematical Formalism for the Dirac Formulation of Quantum Mechanics. Found. Phys. 32, 815–869 (2002)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Gelfand, I.M., Shilov, G.E.: Generalized Functions: Spaces of Fundamental and Generalized Functions. New York: Academic, 1968Google Scholar
  6. 6.
    Kruszynski, P., Woronowicz, S.L.: A Non-commutative Gelfand-Naimark Theorem. J. Oper. Theor. 8, 361–389 (1982)MathSciNetMATHGoogle Scholar
  7. 7.
    Maurin, K.: Methods of Hilbert spaces. Warszawa: PWN, 1967Google Scholar
  8. 8.
    Maurin, K.: General Eigenfunction Expansion and Unitary Representations of Topological Groups. Warszawa: PWN, 1968Google Scholar
  9. 9.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics, Part I. New York: Academic Press, 1975Google Scholar
  10. 10.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics, Part II. New York: Academic Press, 1975Google Scholar
  11. 11.
    Rowicka, M.: Quantum ‘az+b’ group at roots of unity: Unitary representations. math.QA/0108020Google Scholar
  12. 12.
    Rowicka, M.: Unitary representations of the quantum ‘ax+b’ group. math.QA/0102151Google Scholar
  13. 13.
    Rudin, W: Functional Analysis. New York: McGraw-Hill, 1991Google Scholar
  14. 14.
    Woronowicz, S.L.: Operator systems and their application to the Tomita-Takesaki theory. J. Oper. Theor. 2, 169–209 (1979)MathSciNetMATHGoogle Scholar
  15. 15.
    Woronowicz, S.L.: Duality in the C * -algebra theory. Warszawa, 1983Google Scholar
  16. 16.
    Woronowicz, S.L.: Operator Equalities Related to the Quantum E(2) Group. Commun. Math. Phys. 144, 417–428 (1992)MATHGoogle Scholar
  17. 17.
    Woronowicz, S.L.: C *-algebras generated by unbounded elements. Rev. Math. Phys. 7, 481–521 (1995)CrossRefMathSciNetMATHGoogle Scholar
  18. 18.
    Woronowicz, S.L.: Quantum exponential function. Rev. Math. Phys. 12, 873–920 (2000)CrossRefMathSciNetMATHGoogle Scholar
  19. 19.
    Woronowicz, S.L., Zakrzewski, S.: Quantum ‘ax+b’ group. Rev. Math. Phys. 14, 797–828 (2002)CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  1. 1.Department of Mathematical Methods in PhysicsUniversity of WarsawWarsawPoland
  2. 2.University of Texas SouthwesternDallasUSA

Personalised recommendations