Advertisement

Communications in Mathematical Physics

, Volume 243, Issue 3, pp 557–582 | Cite as

Mirror Symmetry on Kummer Type K3 Surfaces

  • Werner Nahm
  • Katrin Wendland
Article

Abstract

We investigate both geometric and conformal field theoretic aspects of mirror symmetry on N=(4,4) superconformal field theories with central charge c=6. Our approach enables us to determine the action of mirror symmetry on (non-stable) singular fibers in elliptic fibrations of ℤ N orbifold limits of K3. The resulting map gives an automorphism of order 4,8, or 12, respectively, on the smooth universal covering space of the moduli space. We explicitly derive the geometric counterparts of the twist fields in our orbifold conformal field theories. The classical McKay correspondence allows for a natural interpretation of our results.

Keywords

Field Theory Modulus Space Mirror Symmetry Central Charge Universal Covering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andreas, B., Curio, G., Ruiperez, D.H., Yau, S.-T.: Fourier-Mukai transform and mirror symmetry for D-branes on elliptic Calabi-Yau. math.ag/0012196Google Scholar
  2. 2.
    Andreas, B., Curio, G., Ruiperez, D.H., Yau, S.-T.: Fibrewise T-duality for D-branes on elliptic Calabi-Yau. JHEP 0103:020 (2001), hep-th/0101129Google Scholar
  3. 3.
    Aspinwall, P.S., Greene, B.R., Morrison, D.R.: Calabi–Yau moduli space, mirror manifolds and spacetime topology change in string theory. Nucl. Phys. B416, 414–480 (1994), hep-th/9309097Google Scholar
  4. 4.
    Aspinwall, P.S., Greene, B.R., Morrison, D.R.: Measuring small distances in N=2 sigma models. Nucl. Phys. B420, 184–242 (1994), hep-th/9311042Google Scholar
  5. 5.
    Aspinwall, P.S., Morrison, D.R.: String theory on K3 surfaces. In: Greene, B., Yau, S.-T. (eds.), Mirror symmetry, Vol. II, Cambridge, MA: International Press, 1994, pp. 703–716, hep-th/9404151Google Scholar
  6. 6.
    Aspinwall, P.S.: Enhanced gauge symmetries and K3 surfaces. Phys. Lett. B357, 329–334 (1995), hep-th/9507012Google Scholar
  7. 7.
    Bartocci, C., Bruzzo, U., Ruiperez, D.H., Munoz Porras, J.M.: Mirror symmetry on elliptic K3 surfaces via Fourier-Mukai transform. Commun. Math. Phys. 195, 79–93 (1998), alg-geom/9704023CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Batyrev, V.: Dual polyhedra and mirror symmetry for Calabi–Yau hypersurfaces in toric varieties. J. Algebr. Geom. 3, 493–535 (1994), alg-geom/9310003MathSciNetzbMATHGoogle Scholar
  9. 9.
    Batyrev, V.: Birational Calabi-Yau n-folds have equal Betti numbers. In: New trends in algebraic geometry (Warwick, 1996), London Math. Soc. Lecture Note Ser. 264, 1996. Cambridge, UK: Cambridge Univ. Press, 1999, pp. 1–11, alg-geom/9710020Google Scholar
  10. 10.
    Bergman, O., Gimon, E., Kol, B.: Strings on orbifold lines. JHEP 0105:19 (2001), hep-th/0102095Google Scholar
  11. 11.
    Braam, P.J., van Baal, P.: Nahm’s transformation for instantons. Commun. Math. Phys. 122, 267–280 (1989)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Bridgeland, T., King, A., Reid, M.: Mukai implies McKay: The McKay correspondence as an equivalence of derived categories. J. Am. Math. Soc. 14(3), 535–554 (2001), math.AG/9908027CrossRefzbMATHGoogle Scholar
  13. 13.
    Brunner, I., Entin, R., Römelsberger, Ch.: D-branes on T 4/ℤ2 and T-Duality. JHEP 9906:16, (1999), hep-th/9905078Google Scholar
  14. 14.
    Bruzzo, U., Sanguinetti, G.: Mirror symmetry on K3 surfaces as a hyper-Kaehler rotation. Lett. Math. Phys. 45, 295–301 (1998), physics/9802044CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Candelas, P., De~La Ossa, X.C., Green, P.S., Parkes, L.: A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory. Nucl. Phys. B359, 21–74 (1991)Google Scholar
  16. 16.
    Cecotti, S.: N=2 supergravity, type IIB superstrings and algebraic geometry. Commun. Math. Phys. 131, 517–536 (1990)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Chen, W., Ruan, Y.: Orbifold quantum cohomology. math.AG/0005198Google Scholar
  18. 18.
    Cox, D.A., Katz, S.: Mirror symmetry and algebraic geometry. Providence, RI: Am. Math. Soc., 1999Google Scholar
  19. 19.
    de~Boer, J., Dijkgraaf, R., Hori, K., Keurentjes, A., Morgan, J., Morrison, D.R., Sethi, S.: Triples, fluxes, and strings. Adv. Theor. Math. Phys. 4(5), 995–1186 (2000), hep-th/0103170Google Scholar
  20. 20.
    Denef, J., Loeser, F.: Germs of arcs on singular algebraic varieties and motivic integration. Invent. Math. 135(1), 201–232 (1999), math.AG/9803039CrossRefzbMATHGoogle Scholar
  21. 21.
    Diaconescu, D.-E., Gomis, J.: Fractional branes and boundary states in orbifold theories. JHEP 0110:001 (2000), hep-th/9906242Google Scholar
  22. 22.
    Dijkgraaf, R.: Instanton strings and hyperkaehler geometry. Nucl. Phys. B543, 545–571 (1999), hep-th/9810210Google Scholar
  23. 23.
    Distler, J., Greene, B.: Some exact results on the superpotential from Calabi-Yau compactifications. Nucl. Phys. B309, 295–316 (1988)Google Scholar
  24. 24.
    Dixon, L.J.: Some world-sheet properties of superstring compactifications, on orbifolds and otherwise. Lectures given at the 1987 ICTP Summer Workshop in High Energy Physics and Cosmology, Trieste, June 29 - August 7Google Scholar
  25. 25.
    Dixon, L.J., Friedan, D., Martinec, E., Shenker, S.: The conformal field theory of orbifolds. Nucl. Phys. B282, 13–73 (1987)Google Scholar
  26. 26.
    Eguchi, T., Taormina, A.: Extended superconformal algebras and string compactifications. Trieste School 1988: Superstrings, pp. 167–188Google Scholar
  27. 27.
    Fantechi, B., Göttsche, L.: Orbifold cohomology for global quotients. math.AG/ 0104207Google Scholar
  28. 28.
    Garcia-Compean, H.: D-branes in orbifold singularities and equivariant K- theory. Nucl. Phys. B557, 480–504 (1999), hep-th/9812226Google Scholar
  29. 29.
    Gomez, C., Hernandez, R., Lopez, E.: S-Duality and the Calabi-Yau interpretation of the N = 4 to N = 2 flow. Phys. Lett. B386, 115–122 (1996), hep-th/9512017Google Scholar
  30. 30.
    Gonzalez-Sprinberg, G., Verdier, J.-L.: Construction géométrique de la correspondance de McKay. Ann. Sci. École Norm. Sup. 16(3), 409–449 (1983)zbMATHGoogle Scholar
  31. 31.
    Greene, B.R., Plesser, M.R.: Duality in Calabi-Yau moduli space. Nucl. Phys. B338, 15–37 (1990)Google Scholar
  32. 32.
    Gross, M., Wilson, P.M.H.: Mirror symmetry via 3-tori for a class of Calabi-Yau threefolds. Math. Ann. 309(3), 505–531 (1997), alg-geom/9608004CrossRefzbMATHGoogle Scholar
  33. 33.
    Gross, M., Wilson, P.M.H.: Large Complex Structure Limits of K3 Surfaces. J. Diff. Geom. 55(3), 475–546 (2000), math.DG/0008018zbMATHGoogle Scholar
  34. 34.
    Hamidi, S., Vafa, C.: Interactions on orbifolds. Nucl. Phys. B279, 465–513 (1987)Google Scholar
  35. 35.
    Harvey, R., Lawson Jr., H.B.: Calibrated geometries. Acta Math. 148, 47–157 (1982)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Hirzebruch, F.: The topology of normal singularities of an algebraic surface (after D. Mumford). In: Séminaire Bourbaki, vol. 8. Paris, France: Soc. Math. 1995, Exp. No. 250, pp. 129–137Google Scholar
  37. 37.
    Huybrechts, D.: The Kaehler cone of a compact hyperkaehler manifold. math.AG/9909109Google Scholar
  38. 38.
    Katz, S., Morrison, D.R., Plesser, M.R.: Enhanced Gauge Symmetry in Type II String Theory. Nucl. Phys. B477, 105–140 (1996), hep-th/9601108Google Scholar
  39. 39.
    Kiritsis, E., Obers, N., Pioline, B.: Heterotic/type II triality and instantons on K(3). JHEP 0001:019 (2000), hep-th/0001083Google Scholar
  40. 40.
    Knörrer, H.: Group representations and the resolution of rational double points. In: Finite groups – coming of age (Montreal, Que., 1982). Providence, R.I.: Am. Math. Soc., 1985, pp. 175–222Google Scholar
  41. 41.
    Kodaira, K.: On compact analytic surfaces: II. Ann. Math. 77, 563–626 (1963)zbMATHGoogle Scholar
  42. 42.
    Kontsevich, M.: Homological algebra of mirror symmetry. In: Proceedings of the International Congress of Mathematicians (Zürich, 1994), Vol. 1,2, Basel: Birkhäuser, 1995, pp. 120–139, alg-geom/9411018Google Scholar
  43. 43.
    Kontsevich, M.: Lecture at Orsay, December 7, 1995Google Scholar
  44. 44.
    Kontsevich, M., Soibelman, Y.: Homological mirror symmetry and torus fibrations. math.SG/0011041Google Scholar
  45. 45.
    Kutasov, D.: Geometry on the space of conformal field theories and contact terms. Phys. Lett. B220, 153–164, (1989)Google Scholar
  46. 46.
    Lepowsky, J.: Calculus of twisted vertex operators. Proc. Nat. Acad. Sci. U.S.A. 82(24), 8295–8299 (1985)zbMATHGoogle Scholar
  47. 47.
    Lerche, W., Vafa, C., Warner, N.P.: Chiral rings in N=2 superconformal theories. Nucl. Phys. B324, 427–474 (1989)Google Scholar
  48. 48.
    McKay, J.: Graphs, singularities, and finite groups. In: The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979). Providence, R.I.: Am. Math. Soc., 1980, pp. 183–186Google Scholar
  49. 49.
    McKay, J.: Cartan matrices, finite groups of quaternions, and Kleinian singularities. Proc. Am. Math. Soc. 81(1), 153–154 (1981)zbMATHGoogle Scholar
  50. 50.
    Morrison, D.R.: Mirror symmetry and rational curves on quintic threefolds: A guide for mathematicians. J. Am. Math. Soc. 6(1), 223–247 (1993), alg-geom/9202004zbMATHGoogle Scholar
  51. 51.
    Morrison, D.R.: The Geometry Underlying Mirror Symmetry. In: New trends in algebraic geometry (Warwick, 1996). Cambridge, UK: Cambridge Univ. Press, 1999, pp. 283–310, alg-geom/9608006Google Scholar
  52. 52.
    Mumford, D.: The topology of normal singularities of an algebraic surface and a criterion for simplicity. Inst. Hautes Études Sci. Publ. Math. 9, 5–22 (1961)zbMATHGoogle Scholar
  53. 53.
    Nahm, W.: The construction of all self–dual monopoles by the ADHM method. In: Craigie, N.S., Goddard, P., Nahm, W. (eds.), Monopoles in quantum field theory (Trieste, 1981). Singapore: World Scientific, 1982, pp. 87–94Google Scholar
  54. 54.
    Nahm, W.: Self–dual monopoles and calorons. In: Denardo, G., et~al. (eds.), Lecture Notes in Physics, Vol. 201. Berlin-Heidelberg-New York: Springer, 1984, pp. 189–200Google Scholar
  55. 55.
    Nahm, W., Wendland, K.: A hiker’s guide to K3 – Aspects of N=(4,4) superconformal field theory with central charge c=6. Commun. Math. Phys. 216, 85–138 (2001), hep-th/9912067MathSciNetzbMATHGoogle Scholar
  56. 56.
    Nahm, W.: Strings on K3. In: Proceedings of the ICMP 2000. London, 2000Google Scholar
  57. 57.
    Narain, K.S.: New heterotic string theories in uncompactified dimensions < 10. Phys. Lett. 169B, 41–46 (1986)CrossRefMathSciNetGoogle Scholar
  58. 58.
    Narain, K.S., Sarmadi, M.H., Vafa, C.: Asymmetric orbifolds. Nucl. Phys. B288, 551–557 (1987)Google Scholar
  59. 59.
    Nikulin, V.V.: On Kummer Surfaces. Math. USSR Isv. 9, 261–275 (1975)zbMATHGoogle Scholar
  60. 60.
    Obers, N.A., Pioline, B.: Exact thresholds and instanton effects in string theory. Fortsch. Phys. 49, 359–375 (2001), hep-th/0101122CrossRefMathSciNetzbMATHGoogle Scholar
  61. 61.
    Ruan, Y.: Stringy geometry and topology of orbifolds. math.AG/0011149Google Scholar
  62. 62.
    Ruan, Y.: Cohomolgy ring of crepant resolutions. math.AG/0108195Google Scholar
  63. 63.
    Schenk, H.: On a generalized Fourier transform of instantons over flat tori. Commun. Math. Phys. 116, 177–183 (1988)MathSciNetzbMATHGoogle Scholar
  64. 64.
    Seiberg, N.: Observations on the moduli space of superconformal field theories. Nucl. Phys. B303, 286–304 (1988)Google Scholar
  65. 65.
    Strominger, A., Yau, S.-T., Zaslow, E.: Mirror symmetry is T-duality. Nucl. Phys. B479, 243–259 (1996), hep-th/9606040Google Scholar
  66. 66.
    Thomas, R.P.: Mirror symmetry and actions of braid groups on derived categories. In: Proceedings of the Harvard Winter School on Mirror Symmetry, Vector Bundles and Lagrangian Submanifolds, January 1999. Cambridge MA: International Press, 2001, pp. 187–201Google Scholar
  67. 67.
    Thurston, W.P.: Three-dimensional geometry and topology. Vol. 1. Levy, S. (ed.). Princeton, NJ: Princeton University Press, 1997Google Scholar
  68. 68.
    Vafa, C., Witten, E.: On orbifolds with discrete torsion. J. Geom. Phys. 15, 189–214 (1995), hep-th/9409188CrossRefMathSciNetzbMATHGoogle Scholar
  69. 69.
    van Enckevort, Ch.: Mirror Symmetry and T–Duality. Ph.D. thesis, Universiteit Utrecht, 2000Google Scholar
  70. 70.
    Wendland, K.: Consistency of orbifold conformal field theories on K3. Adv. Theor. Math. Phys. 5(3), (2001), hep-th/0010281Google Scholar
  71. 71.
    Witten, E.: String theory dynamics in various dimensions. Nucl. Phys. B443, 85–126 (1995), hep-th/9503124Google Scholar
  72. 72.
    Witten, E.: D-branes and K-theory. JHEP 9812:019 (1998), hep-th/9810188Google Scholar
  73. 73.
    Wolf, J.A.: Complex homogeneous contact manifolds and quaternionic symmetric spaces. J. Math. Mech. 14, 1033–1047 (1965)zbMATHGoogle Scholar
  74. 74.
    Zamolodchikov, A.B.: Irreversibility of the flux of the renormalization group in a 2-D field theory. JETP Lett. 43, 730–732 (1986)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  1. 1.Physikalisches InstitutUniversität BonnBonnGermany
  2. 2.Dept. of Physics and AstronomyUNC at Chapel HillUSA

Personalised recommendations