Advertisement

Communications in Mathematical Physics

, Volume 243, Issue 2, pp 275–314 | Cite as

The Master Ward Identity and Generalized Schwinger-Dyson Equation in Classical Field Theory

  • Michael DütschEmail author
  • Klaus Fredenhagen
Article

Abstract

In the framework of perturbative quantum field theory a new, universal renormalization condition (called Master Ward Identity) was recently proposed by one of us (M.D.) in a joint paper with F.-M. Boas. The main aim of the present paper is to get a better understanding of the Master Ward Identity by analyzing its meaning in classical field theory. It turns out that it is the most general identity for classical local fields which follows from the field equations. It is equivalent to a generalization of the Schwinger-Dyson Equation and is closely related to the Quantum Action Principle of Lowenstein and Lam. As a byproduct we give a self-contained treatment of Peierls’ manifestly covariant definition of the Poisson bracket.

Keywords

Field Theory Quantum Field Theory Field Equation Local Field Poisson Bracket 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Becchi, C., Rouet, A., Stora, R.: Renormalization of the abelian Higgs-Kibble model. Commun. Math. Phys. 42, 127 (1975); Becchi, C., Rouet, A., Stora, R.: Renormalization of gauge theories. Ann. Phys. (N.Y.) 98, 287 (1976)Google Scholar
  2. 2.
    Bogoliubov, N.N., Shirkov, D.V.: Introduction to the Theory of Quantized Fields. New York, 1959Google Scholar
  3. 3.
    Brunetti, R., Fredenhagen, K.: Microlocal analysis and interacting quantum field theories: Renormalization on physical backgrounds. Commun. Math. Phys. 208, 623 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    DeWitt, B.S.: The spacetime approach to quantum field theory. In: Relativity, Groups, and Topology II: Les Houches 1983, B.S. DeWitt and R. Stora, (eds.), Part 2, New York: North-Holland, 1984, pp. 381–738Google Scholar
  5. 5.
    Dütsch, M., Fredenhagen, K.: A local (perturbative) construction of observables in gauge theories: The example of QED. Commun. Math. Phys. 203, 71 (1999); Dütsch, M., and Fredenhagen, K.: Deformation stability of BRST-quantization. Preprint: hep-th/9807215, DESY 98-098, Proceedings of the conference ‘Particles, Fields and Gravitation’, Lodz, Poland, 1998CrossRefGoogle Scholar
  6. 6.
    Dütsch, M., Fredenhagen, K.: Algebraic Quantum Field Theory, Perturbation Theory, and the Loop Expansion. Commun. Math. Phys. 219, 5 (2001); Dütsch, M., Fredenhagen, K.: Perturbative Algebraic Field Theory, and Deformation Quantization. Fields Inst. Commun. 30, 151 (2001), hep-th/0101079MathSciNetGoogle Scholar
  7. 7.
    Dütsch, M., Boas, F.-M.: The Master Ward Identity. Rev. Math. Phys 14, 977–1049 (2002)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Dütsch, M., Fredenhagen, K.: Causal perturbation theory in terms of retarded products, and a local formulation of the renormalization group. Work in progressGoogle Scholar
  9. 9.
    Dütsch, M., Hurth, T., Krahe, K., Scharf, G.: Causal construction of Yang-Mills theories. I. N. Cimento A 106, 1029 (1993); Dütsch, M., Hurth, T., Krahe, K., Scharf, G.: Causal construction of Yang-Mills theories. II. N. Cimento A 107, 375 (1994)MathSciNetGoogle Scholar
  10. 10.
    Dütsch, M., Scharf, G.: Perturbative Gauge Invariance: The Electroweak Theory. Ann. Phys. (Leipzig), 8, (1999) 359; Aste, A., Dütsch, M., Scharf, G.: Perturbative Gauge Invariance: The Electroweak Theory II. Ann. Phys. (Leipzig), 8 (1999) 389Google Scholar
  11. 11.
    Dütsch, M., Schroer, B.: Massive Vector Mesons and Gauge Theory. J. Phys. A 33, 4317 (2000)MathSciNetGoogle Scholar
  12. 12.
    Epstein, H., Glaser, V.: The role of locality in perturbation theory. Ann. Inst. H. Poincaré A 19, 211 (1973)Google Scholar
  13. 13.
    Glaser, V., Lehmann, H., Zimmermann, W.: Field Operators and Retarded Functions. Nuovo Cimen. 6, 1122 (1957)zbMATHGoogle Scholar
  14. 14.
    Grigore, D.R.: On the uniqueness of the nonabelian gauge theories in Epstein-Glaser approach to renormalisation theory. Romanian J. Phys. 44, 853 (1999), hep-th/9806244MathSciNetGoogle Scholar
  15. 15.
    Henneaux, M., Teitelboim, C.: Quantization of Gauge Systems. Princeton, NJ: Princeton University Press, 1992Google Scholar
  16. 16.
    Hollands, S., Wald, R. M.: Local Wick Polynomials and Time-Ordered-Products of Quantum Fields in Curved Spacetime. Commun. Math. Phys. 223, (2001) 289; Hollands, S., Wald, R. M.: Existence of Local Covariant Time-Ordered-Products of Quantum Fields in Curved Spacetime. Commun. Math. Phys., (2002)Google Scholar
  17. 17.
    Hurth, T., Skenderis, K.: The quantum Noether condition in terms of interacting fields. In: New Developments in Quantum Field Theory, P. Breitenlohner, D. Maison, J.Wess, (eds.), Lect. Notes Phys. 558, Berlin-Heidelberg-New York: Springer, 2000, p. 86Google Scholar
  18. 18.
    Kugo, T., Ojima, I.: Local covariant operator formalism of nonabelian gauge theories and quark confinement problem. Suppl. Progr. Theor. Phys. 66, 1 (1979)Google Scholar
  19. 19.
    Lam, Y.-M.P.: Perturbation Lagrangian Theory for Scalar Fields - Ward-Takahashi Identity and Current Algebra. Phys. Rev. D6, 2145 (1972)Google Scholar
  20. 20.
    Lam, Y.-M.P.: Equivalence Theorem on Bogoliubov-Parasiuk-Hepp-Zimmermann - Renormalized Lagrangian Field Theories. Phys. Rev. D7, 2943 (1973)Google Scholar
  21. 21.
    Lowenstein, J.H.: Differential vertex operations in Lagrangian field theory. Commun. Math. Phys. 24, 1 (1971)zbMATHGoogle Scholar
  22. 22.
    Lowenstein, J.H.: Normal-Product Quantization of Currents in Lagrangian Field Theory. Phys. Rev. D 4, 2281 (1971)CrossRefGoogle Scholar
  23. 23.
    Marolf, D.M.: The Generalized Peierls Bracket. Ann. Phys. (N.Y.) 236, 392 (1994)CrossRefzbMATHGoogle Scholar
  24. 24.
    Nakanishi, N.: Prog. Theor. Phys. 35, 1111 (1966); Lautrup, B.: Kgl. Danske Videnskab. Selskab. Mat.-fys. Medd. 35 (11), 1 (1967)Google Scholar
  25. 25.
    Lehmann, H., Symanzik, K., Zimmermann, W.: On the formulation of quantized field theories II. Nuovo Cimen. 6, 319 (1957)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Peierls, R.: The commutation laws of relativistic field theory. Proc. Roy. Soc. (London) A 214, 143 (1952)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Piguet, O., Sorella, S.: Algebraic renormalization: Perturbative renormalization, symmetries and anomalies. Berlin: Springer, Lecture notes in Physics, 1995Google Scholar
  28. 28.
    Pinter, G.: Finite Renormalizations in the Epstein-Glaser Framework and Renormalization of the S-Matrix of φ4-Theory. Ann. Phys. (Leipzig) 10, 333 (2001)CrossRefzbMATHGoogle Scholar
  29. 29.
    Scharf, G.: Quantum Gauge Theories - A True Ghost Story. New York: John Wiley and Sons, 2001Google Scholar
  30. 30.
    Steinmann, O.: Perturbation expansions in axiomatic field theory. Lecture Notes in Physics 11, Berlin-Heidelberg-New York: Springer-Verlag, 1971Google Scholar
  31. 31.
    Stora, R.: Local gauge groups in quantum field theory: Perturbative gauge theories. Talk given at the workshop ‘Local Quantum Physics’ at the Erwin-Schroedinger-Institute, Vienna, 1997Google Scholar
  32. 32.
    Stora, R.: Pedagogical Experiments in Renormalized Perturbation Theory. Contribution to the conference ‘Theory of Renormalization and Regularization’, Hesselberg, Germany (2002), http://www.thep.physik.uni-mainz.de/~scheck/Hessbg02.html; and private communicationGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikGöttingenGermany
  2. 2.Institut für Theoretische PhysikHamburgGermany

Personalised recommendations