Advertisement

Communications in Mathematical Physics

, Volume 243, Issue 1, pp 93–103 | Cite as

A Non-Existence Result for Supersonic Travelling Waves in the Gross-Pitaevskii Equation

  • Philippe GravejatEmail author
Article

Abstract

We prove the non-existence of non-constant travelling waves of finite energy and of speed \({{c > \sqrt{{2}}}}\) in the Gross-Pitaevskii equation in dimension N≥2.

Keywords

Finite Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Béthuel, F., Saut, J.C.: Travelling waves for the Gross-Pitaevskii equation I. Ann. Inst. Henri Poincaré. Physique théorique 70(2), 147–238 (1999)Google Scholar
  2. 2.
    Béthuel, F., Saut, J.C.: Travelling waves for the Gross-Pitaevskii equation II. PreprintGoogle Scholar
  3. 3.
    Béthuel, F., Orlandi, G., Smets, D.: Vortex rings for the Gross-Pitaevskii equation. J. Eur. Math. Soc., in pressGoogle Scholar
  4. 4.
    Cohen-Tannoudji, C., Dupont-Roc, J., Grynberg, G.: Photons et atomes. Introduction à l’électrodynamique quantique. Interéditions, Editions du CNRS, 1987Google Scholar
  5. 5.
    Farina, A.: From Ginzburg-Landau to Gross-Pitaevskii. PreprintGoogle Scholar
  6. 6.
    Gravejat, P.: Limit at infinity for travelling waves in the Gross-Pitaevskii equation. C. R. Acad. Sci. Paris, Sér I 336, 147–152 (2003)Google Scholar
  7. 7.
    Gravejat, P.: Decay for travelling waves in the Gross-Pitaevskii equation. Ann. Inst. Henri Poincaré Analyse non linéaire, in pressGoogle Scholar
  8. 8.
    Gross, E.P.: Hydrodynamics of a superfluid condensate. J. Math. Phys. 4(2), 195–207 (1963)Google Scholar
  9. 9.
    Jones, C.A., Roberts, P.H.: Motions in a Bose condensate IV, Axisymmetric solitary waves. J. Phys. A.Math. Gen. 15, 2599–2619 (1982)CrossRefGoogle Scholar
  10. 10.
    Jones, C.A., Putterman, S.J., Roberts, P.H.: Motions in a Bose condensate V, Stability of wave solutions of nonlinear Schrödinger equations in two and three dimensions. J. Phys. A. Math. Gen. 15, 2991–3011 (1982)CrossRefGoogle Scholar
  11. 11.
    Madelung, E.: Quantumtheorie in Hydrodynamische form. Zts. F. Phys. 40, 322–326 (1926)zbMATHGoogle Scholar
  12. 12.
    Pitaevskii, L.P.: Vortex lines in an imperfect Bose gas. Soviet Physics JEPT 13(2), 451–454 (1961)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  1. 1.Laboratoire Jacques-Louis LionsUniversité Pierre et Marie CurieParis Cedex 05France

Personalised recommendations