Advertisement

Communications in Mathematical Physics

, Volume 238, Issue 1–2, pp 211–223 | Cite as

Existence of Global Weak Solutions for a 2D Viscous Shallow Water Equations and Convergence to the Quasi-Geostrophic Model

  • Didier Bresch
  • Benoît Desjardins

Abstract:

 We consider a two dimensional viscous shallow water model with friction term. Existence of global weak solutions is obtained and convergence to the strong solution of the viscous quasi-geostrophic equation with free surface term is proven in the well prepared case. The ill prepared data case is also discussed.

Keywords

Free Surface Shallow Water Weak Solution Strong Solution Water Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Didier Bresch
    • 1
  • Benoît Desjardins
    • 2
  1. 1.Laboratoire de Mathématiques Appliquées, Université Blaise Pascal et C.N.R.S., 63177 Aubière cedex, France. E-mail: Didier.Bresch@math.univ-bpclermont.frFR
  2. 2.CEA/DIF, B.P. 12, 91680 Bruyères le Châtel, France. E-mail: Benoit.Desjardins@mines.orgFR

Personalised recommendations