Skip to main content
Log in

Pion production in mass- symmetric heavy ion collisions at 0.8–1.8 AGeV

  • Published:
Zeitschrift für Physik A Hadrons and Nuclei

Abstract

Double differential cross sections of positively charged pions and protons have been measured in nuclear collisions of mass-symmetric systems (Ne+NaF, Ni+Ni, Au+Au, Bi+Pb) at incident energies between 0.8 and 1.8 AGeV as a function of the centrality of the reaction. Using a magnetic spectrometer pions and protons were detected with laboratory angles between 40 and 48 degrees, and with momenta up to about 1400 MeV/c. This setting allows for the study of pions and protons emitted close to midrapidity. The center-of-mass pion spectra deviate from a Boltzmann distribution. The inverse slope parameters of the high-energetic pions are smaller than those of the proton spectra and they exhibit a weaker centrality dependence. A scenario is presented where the shape of the pion spectra reflects the decay kinematics of nucleonic resonances embedded in the thermal and the collective motion of the nucleons in the reaction zone. The number of emitted pions per participating nucleon is higher for light than for heavy mass systems. For a given mass system, the total pion multiplicity increases linearly with the number of participating nucleons, whereas the multiplicity of high-energy pions increases more than linearly. This result is consistent with a scenario where the high-energy pions are produced in multiple energetic baryon-baryon collisions occurring in the high-density phase of the collision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Nagamiya et al., Phys. Rev. C 24, 971 (1981)

    Article  ADS  Google Scholar 

  2. R. Brockmann et al., Phys. Rev. Lett., 53, 2012 (1984)

    Article  ADS  Google Scholar 

  3. R. Stock, Phys. Rep. 135, 259 (1986)

    Article  ADS  Google Scholar 

  4. S. Nagamiya, Phys. Rev. Lett. 49, 1383 (1982)

    Article  ADS  Google Scholar 

  5. P. Braun-Munzinger, J. Stachel, J. P. Wessels, N. Xu, Phys. Lett. B 344, 43 (1995)

    Article  ADS  Google Scholar 

  6. S. Hayashi et al., Phys. Rev. C 38, 1229 (1988)

    Article  ADS  Google Scholar 

  7. S. Backovic et al., Phys. Rev. C 46, 1501 (1992)

    Article  ADS  Google Scholar 

  8. O. Schwalb et al., Phys. Lett. B 321, 20 (1994)

    Article  ADS  Google Scholar 

  9. C. Miintz et al., Z. Phys. A 352, 175 (1995); C. Müntz, PhD Thesis (1993), Technische Hochschule Darmstadt, Germany, GSI report 93-41 (ISSN 0171-4546)

    Article  ADS  Google Scholar 

  10. P. Danielewicz, Phys. Rev. C 51, 716 (1995)

    Article  ADS  Google Scholar 

  11. P. Senger et al., Nucl. Instr. Meth. A 327, 393 (1993)

    Article  ADS  Google Scholar 

  12. P. Baltes et al., GSI Scientific Report 1993, p. 285

  13. H. Stelzer, Nucl. Instr. Meth. A 310, 103 (1991)

    Article  ADS  Google Scholar 

  14. D. Miśkowiec et al., Nucl. Instr. Meth. A 350, 174 (1994)

    Article  ADS  Google Scholar 

  15. W. Ahner et al., Z. Phys. A 341, 123 (1991)

    Article  ADS  Google Scholar 

  16. D. Brill et al., Phys. Rev. Lett. 71, 336 (1993); D. Brill et al., Z. Phys. A 355, 61 (1996); D. Brill, PhD Thesis (1993), University of Frankfurt, Germany, GSI report 93-36 (ISSN 0171-4546)

    Article  ADS  Google Scholar 

  17. R. Brun, F. Bouyant, M. Maire, A.C. McPherson, P. Zanarini, CERN Publication DD/EE/84-1

  18. B. J. Ver West, R. A. Arndt, Phys. Rev. C 25, 1979 (1982)

    Article  ADS  Google Scholar 

  19. J.W. Harris et al., Phys. Rev. Lett. 58, 463 (1987)

    Article  ADS  Google Scholar 

  20. D. Ashery et al., Phys. Rev. C 23, 2173 (1981)

    Article  ADS  Google Scholar 

  21. D. Miskowiec et al., Phys. Rev. Lett. 72, 3650 (1994); D. Miśkowiec, PhD Thesis (1991), Jagiellonian University Cracow, Poland

    Article  ADS  Google Scholar 

  22. H.H. Gutbrod et al., Phys. Rev. C 42, 640 (1990)

    Article  ADS  Google Scholar 

  23. G. Fai and J. Randrup, Comp. Phys. Communication 42, 385 (1986)

    Article  ADS  Google Scholar 

  24. K.G.R. Doss et al., Mod. Phys. Lett. A3, 849 (1988)

    Article  ADS  Google Scholar 

  25. S. A. Bass, C. Hartnack, H. Stöcker and W. Greiner, Phys. Rev. C50, 2167 (1994)

    ADS  Google Scholar 

  26. S. A. Bass, M. Hofmann, C. Hartnack, H. Stöcker and W. Greiner, Phys. Lett. B335, 289 (1994)

    Article  ADS  Google Scholar 

  27. J. Cugnon et al., Nucl. Phys. A 379, 553 (1982)

    Article  ADS  Google Scholar 

  28. B.A. Li and W. Bauer, Phys. Rev. C 44, 450 (1991); B.A. Li, Nucl. Phys. A 552, 605 (1993)

    Article  ADS  Google Scholar 

  29. W. Ehehalt et al., Phys. Rev. C 47, R2467 (1993)

    Article  ADS  Google Scholar 

  30. P. J. Siemens and J. O. Rasmussen, Phys. Rev. Lett 42, 880 (1979)

    Article  ADS  Google Scholar 

  31. M. A. Lisa et al., Phys. Rev. Lett. 75, 2662 (1995); M.D. Partlan et al., Phys. Rev. Lett. 75, 2100 (1995)

    Article  ADS  Google Scholar 

  32. Y. Kitazoe et al., Phys. Lett. B 166, 35 (1986)

    Article  ADS  Google Scholar 

  33. B.A. Li et al., Phys. Rev. C 52, 2037 (1995)

    Article  ADS  Google Scholar 

  34. M. Hofmann et al., GSI Scientific Report 1994, p. 119

  35. R. Averbeck et al., GSI Scientific Report 1994, p. 80 36. M. Cieślak, PhD Thesis (1995), Jagiellonian University Cracow, Poland; and to be published

  36. J. Aichelin et al., Phys. Rev. Lett. 58, 1926 (1987)

    Article  ADS  Google Scholar 

  37. W. Cassing et al., Phys. Rep. 188, 363 (1990)

    Article  ADS  Google Scholar 

  38. C. Hartnack et al., Nucl. Phys. A 580, 643 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müntz, C., Baltes, P., Oeschler, H. et al. Pion production in mass- symmetric heavy ion collisions at 0.8–1.8 AGeV. Z Phys A - Particles and Fields 357, 399–409 (1997). https://doi.org/10.1007/s002180050259

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002180050259

PACS

Navigation