New triploids late-maturing mandarins as a rich source of antioxidant compounds

  • Sawsen Sdiri
  • José Cuenca
  • Pilar Navarro
  • Alejandra SalvadorEmail author
  • Almudena BermejoEmail author
Original Paper


Juices from nine new late-season triploid mandarins (Tania-46 (1), Tania-47 (2), Omet (3), Albir (4), Tania-48 (5), Tania-43 (6), Tania-44 (7), Coral (8), and Matiz (9), and from their parents were analyzed for mainly internal quality attributes, vitamin C, total phenolics, flavonoids, phenolic, and organic acids. Antioxidant activity was measured by three methods, the DPPH free radical-scavenging assay, ferric reducing antioxidant power (FRAP) test, and ABTS analysis. All the new hybrids exhibited high internal and nutritional quality which may be considerate rich sources of phytochemicals. Among the nine varieties, Tania-48 hybrid was shown to be the richest in vitamin C, flavanones (hesperidin, eriocitrin, and neoeriocitrin), polymethoxyflavones, and malic and succinic acids. Furthermore, the juice of this new triploid hybrid displayed high antioxidant capacity which may make it important for human diet as a source of health-promoting components. On the other hand, Tania-44, Tania-48, and Tania-43 fruit juices exhibited greater content of eriocitrin and neoeriocitrin than the others.


Hybrids Vitamin C Antioxidant activity Flavanones Polymethoxyflavones Organic acids 



This research was supported by the Instituto Valenciano de Investigaciones Agrarias, FEDER and ESF funds (IVIA-51423 from Consellería de Agricultura, Generalitat Valenciana, Valencia, Spain). The authors wish to thank Dr. Luis Navarro for his support.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Research involving human and/or animal participants

The research does not include any human subjects and animal experiments.


  1. 1.
    Citrus Fruit, Fresh and Processed: Statistical Bulletin 2016 (2017) FAO (Food and Agriculture Organization of the United Nations). ( Accessed 01 April 2019
  2. 2.
    Anuario de Estadística (2018) MAPA (Ministerio de Agricultura, Pesca y Alimentación). Accessed 23 May 2019
  3. 3.
    Navarro L, Aleza P, Cuenca J, Juarez J, Pina JA, Ortega C, Navarro A, Ortega V (2015) The mandarin triploid breeding program in Spain. Acta Hortic 1065:389–395CrossRefGoogle Scholar
  4. 4.
    Rapisarda P, Tomaino A, Lo Cascio R, Bonina F, De Pasquale A, Saija A (1999) Antioxidant effectiveness as influenced by phenolic content of fresh orange juices. J Agric Food Chem 47:4718–4723PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Ramful D, Tarnus E, Aruoma OI, Bourdon E, Bahorun ET (2011) Polyphenol composition, vitamin C content and antioxidant capacity of Mauritian citrus fruit pulps. Food Res Int 44:2088–2099CrossRefGoogle Scholar
  6. 6.
    Wang YC, Chuang YC, Ku YH (2007) Quantitation of bioactive compounds in citrus fruits cultivated in Taiwan. Food Chem 102:1163–1171CrossRefGoogle Scholar
  7. 7.
    Goulas V, Manganaris GA (2012) Exploring the phytochemical content and the antioxidant potential of citrus fruits grown in Cyprus. Food Chem 131:39–47CrossRefGoogle Scholar
  8. 8.
    Cano A, Medina A, Bermejo A (2008) Bioactive compounds in different citrus varieties. Discrimination among cultivars. J Food Comp Anal 21:377–381CrossRefGoogle Scholar
  9. 9.
    Goldenberg L, Yaniv Y, Porat R, Carmi N (2018) Mandarin fruit quality: a review. J Sci Food Agric 98:18–26PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Cano A, Alcaraz O, Acosta M, Arnao MB (2002) On-line antioxidant activity determination: comparison of hydrophilic and lipophilic antioxidant activity using the ABTS· + assay. Redox Rep 7:103–109PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Gardner PT, White TAC, McPhail DB, Duthie GG (2000) The relative contributions of vitamin C, carotenoids and phenolics to the antioxidant potential of fruit juices. Food Chem 68:471–474CrossRefGoogle Scholar
  12. 12.
    Giuffrè AM, Zappia C, Capocasale M (2017) Physico-chemical stability of blood orange juice during frozen storage. Int J Food Prop 20:1930–1943Google Scholar
  13. 13.
    Nogata Y, Sakamoto K, Shiratsuchi H, Ishii T, Yano M, Ohta H (2006) Flavonoid composition of fruit tissues of Citrus species. Biosci Biotechnol Biochem 70:178–192PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biol Med 20:933–956CrossRefGoogle Scholar
  15. 15.
    Pulido R, Bravo L, Saura-Calixto F (2000) Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J Agric Food Chem 48:3396–3402PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Nowak D, Gośliński M, Wojtowicz E, Przygoński K (2018) Antioxidant properties and phenolic compounds of vitamin C-rich juices. J Food Sci 83:2237–2246PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Schulz M, Seraglio SKT, Della Betta F, Nehring P, Valese AC, Daguer H, Gonzaga LV, Costa ACO, Fett R (2019) Blackberry (Rubus ulmifolius Schott): Chemical composition, phenolic compounds and antioxidant capacity in two edible stages. Food Res Int 122:627–634PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Albertini MV, Carcouet E, Pailly O, Gambotti C, Luro F, Berti L (2006) Changes in organic acids and sugars during early stages of development of acidic and acidless citrus fruit. J Agric Food Chem 54:8335–8339PubMedCrossRefGoogle Scholar
  19. 19.
    Kelebek H (2010) Sugars, organic acids, phenolic compositions and antioxidant activity of Grapefruit (Citrus paradisi) cultivars grown in Turkey. Ind Crop Prod 32:269–274CrossRefGoogle Scholar
  20. 20.
    Sdiri S, Navarro P, Monterde A, Benabda J, Salvador A (2012) Effect of postharvest degreening followed by a cold-quarantine treatment on vitamin C, phenolic compounds and antioxidant activity of early-season citrus fruit. Postharvest Biol Technol 65:13–21CrossRefGoogle Scholar
  21. 21.
    Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158Google Scholar
  22. 22.
    Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol 28:25–30CrossRefGoogle Scholar
  23. 23.
    Benzie IF, Strain J (1999) Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol 299:15–27CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorizing assay. Free Radical Biol Med 26:1231–1237CrossRefGoogle Scholar
  25. 25.
    Bermejo A, Pardo J, Cano A (2012) Murcott seedless: influence of gamma irradiation on citrus production and fruit quality. Span J Agric Res 10:768–777CrossRefGoogle Scholar
  26. 26.
    Lee SK, Kader AA (2000) Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biol Technol 20:207–220CrossRefGoogle Scholar
  27. 27.
    Rapisarda P, Lo Bianco M, Pannuzzo P, Timpanaro N (2008) Effect of cold storage on vitamin C, phenolics and antioxidant activity of five orange genotypes [Citrus sinensis (L.) Osbeck]. Postharvest Biol Technol 49:348–354CrossRefGoogle Scholar
  28. 28.
    Tounsi MS, Wannes WA, Ourghemmi I, Jegham S, BenNjima Y, Hamdaoui G, Zemni H, Marzouk B (2011) Juice components and antioxidant capacity of four Tunisian Citrus varieties. J Sci Food Agric 91:142–151PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Huang R, Xia R, Hu L, Lu Y, Wang M (2007) Antioxidant activity and oxygen-scavenging system in orange pulp during fruit ripening and maturation. Sci Hortic 113:166–172CrossRefGoogle Scholar
  30. 30.
    Roginsky V, Lissi EA (2005) Review of methods to determine chain-breaking antioxidant activity in food. Food Chem 92:235–254CrossRefGoogle Scholar
  31. 31.
    Abeysinghe DC, Li X, Sun CD, Zhang WS, Zhou CH, Chen KS (2007) Bioactive compounds and antioxidant capacities in different edible tissues of citrus fruit of four species. Food Chem 104:1338–1344CrossRefGoogle Scholar
  32. 32.
    Klimczak I, Malecka M, Szlachta M, Gliszczynska-Swiglo A (2007) Effect of storage on the content of polyphenols, vitamin C and the antioxidant activity of orange juices. J Food Comp Anal 20:313–322CrossRefGoogle Scholar
  33. 33.
    Chay C, Hurtada WA, Dizon EI, Elegado FB, Norng C, Raymundo LC (2017) Total phenolic, antioxidant activity and physic-chemical properties of waxy pigmented and non-pigmented rice in Cambodia. Food Res 1:9–14CrossRefGoogle Scholar
  34. 34.
    Shannon E, Jaiswal AK, Abu-Ghannam N (2018) Polyphenolic content and antioxidant capacity of white, green, black, and herbal teas: a kinetic study. Food Res 2(1):1–11CrossRefGoogle Scholar
  35. 35.
    Peterson JJ, Dwyer JT, Beecher GR, Bhagwat SA, Gebhardt SE, Haytowitz DB, Holden JM (2006) Flavanones in oranges, tangerines (mandarins), tangors, and tangelos: a compilation and review of the data from the analytical literature. J Food Comp Anal 19:S66–S73CrossRefGoogle Scholar
  36. 36.
    Rapisarda P, Fabroni S, Peterek S, Russi G, Mock HP (2009) Juice of new citrus hybrids (Citrus clementina Hort.ex Tan. x C. sinensis L. Osbeck) as a source of natural antioxidants. Food Chem 117:212–218CrossRefGoogle Scholar
  37. 37.
    Roussos PA (2011) Phytochemicals and antioxidant capacity of orange (Citrus sinensis (l). Osbeck cv. Salustiana) juice produced under organic and integrated farming system in Greece. Sci Hortic 129:253–258CrossRefGoogle Scholar
  38. 38.
    Stuetz W, Prapamontol T, Hongsibsong S, Biesalski HK (2010) Polymethoxylated flavones, flavanone glycosides, carotenoids, and antioxidants in different cultivation types of tangerines (Citrus reticulata Blanco cv. Sainampueng) from Northern Thailand. J Agric Food Chem 58:6069–6074PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Dhuique-Mayer C, Caris-Veyrat C, Ollitrault P, Curk F, Amiot MJ (2005) Varietal and interspecific influence on micronutrient contents in Citrus from the Mediterranean area. J Agric Food Chem 53:2140–2145PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Xu G, Liu D, Chen J, Ye X, Ma Y, Shi J (2008) Juice components and antioxidant capacity of citrus varieties cultivated in China. Food Chem 106:545–551CrossRefGoogle Scholar
  41. 41.
    Ye XQ, Chen JC, Liu DH, Jiang P, Shi J, Xue S, Wu D, Xu JG, Kakuda Y (2011) Identification of bioactive composition and antioxidant activity in young mandarin fruits. Food Chem 124:1561–1566CrossRefGoogle Scholar
  42. 42.
    Tripoli E, La Guardia M, Giammanco S, Di Majo D, Giammanco M (2007) Citrus flavonoids: molecular structure, biological activity and nutritional properties: a review. Food Chem 104:466–479CrossRefGoogle Scholar
  43. 43.
    Kawaii S, Tomono Y, Katase E, Ogawa K (2001) Quantitative study of fruit flavonoids in Citrus hybrids of King (C. nobilis) and Mukaku Kishu (C. kinokuni). J Agri Food Chem 49:3982–3986CrossRefGoogle Scholar
  44. 44.
    Kelebek H, Selli S (2010) Determination of volatile, phenolic, organic acid and sugar components in Turkish cv. Dortyol (Citrus sinensis L. Osbeck) orange juice. J Sci Food Agric 91:1855–1862CrossRefGoogle Scholar
  45. 45.
    Kelebek H, Canbas A, Selli S (2008) Determination of phenolic composition and antioxidant capacity of blood orange juices obtained from cvs. Moro and Sanguinello (Citrus sinensis (L.) Osbeck) grown in Turkey. Food Chem 107:1710–1716CrossRefGoogle Scholar
  46. 46.
    Fanciullino AL, Dhuique-Mayer C, Luro F, Morillon R, Ollitrault P (2007) Carotenoid biosynthetic pathway in the Citrus genus: number of copies and phylogenetic diversity of seven genes. J Agric Food Chem 55:7405–7417PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centro de Tecnología PostcosechaInstituto Valenciano de Investigaciones AgrariasValenciaSpain
  2. 2.Centro de Protección Vegetal y BiotecnologíaInstituto Valenciano de Investigaciones AgrariasValenciaSpain
  3. 3.Centro de Citricultura y Producción VegetalInstituto Valenciano de Investigaciones AgrariasValenciaSpain

Personalised recommendations