European Food Research and Technology

, Volume 245, Issue 10, pp 2311–2322 | Cite as

In vitro effects of protein fractions from Controne beans (Phaseolus vulgaris L. ecotype Controne) on intestinal permeability, ACE and α-amylase activities

  • Connie SchisanoEmail author
  • Viviana Narciso
  • Maria Maisto
  • Giuseppe Annunziata
  • Paolo Grieco
  • Eduardo Maria Sommella
  • Gian Carlo Tenore
  • Ettore Novellino
Original Paper


Recent studies suggest that different types of milk-derived proteins or peptides might be active as antihypertensive, antioxidant, immunomodulatory and antimicrobial agents. Nonetheless, the research of an alternative source of bioactive peptides to avoid the different types of allergy and intolerance, caused by milk protein, could be hypothesised. Controne bean (Phaseolus vulgaris L. ecotype Controne) is a typical legume variety from Campania region (Controne Municipality, Salerno, Italy), characterised, on average, by a protein content of 22%. Thus, the aim of this study was to evaluate the in vitro effect of protein extracts (PEs) from different bean cultivars, such as Controne, Spanish White and Cannellini, to verify some peculiar biological properties, such as antiradical, anti α-amylase and angiotensin converting enzyme (ACE) inhibitory activities, as well as to test in vitro the potential influence of PEs on intestinal permeability. The most promising results were provided by Controne cultivar; in particular: antiradical effect, 80%; lactulose/mannitol ratio, LMR, 0.198; α-amylase inhibition, 70%; ACE inhibition, 62%. These results suggest that Controne bean PE may be of interest for potential nutraceutical applications.


ACE inhibition Alpha-amylase inhibition Anti-radical activity Bean Intestinal permeability Protein extract 



The Slow food foundation for biodiversity is gratefully appreciated for the samples provided. The in vitro experiments were performed at Department of Biochemistry and Biophysics, Second University of Naples, Italy. The assistance of the staff is gratefully appreciated.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.


  1. 1.
    Mohanty DP, Mohapatra S, Misra S, Sahu PS (2016) Milk derived bioactive peptides and their impact on human health—a review. Saudi J Biol Sci 23(5):577–583. CrossRefPubMedGoogle Scholar
  2. 2.
    Playford RJ, Macdonald CE, Johnson WS (2000) Colostrum and milk-derived peptide growth factors for the treatment of gastrointestinal disorders. Am J Clin Nutr 72(1):5–14. CrossRefPubMedGoogle Scholar
  3. 3.
    Rangel AHD, Sales DC, Urbano SA, Galvao JGB, de Andrade JC, Macedo CD (2016) Lactose intolerance and cow’s milk protein allergy. Food Sci Technol Braz 36(2):179–187. CrossRefGoogle Scholar
  4. 4.
    Orona-Tamayo D, Valverde ME, Paredes-Lopez O (2018) Bioactive peptides from selected latin american food crops—a nutraceutical and molecular approach. Crit Rev Food Sci Nutr. CrossRefPubMedGoogle Scholar
  5. 5.
    Young VR, Pellett PL (1994) Plant proteins in relation to human protein and amino acid nutrition. Am J Clin Nutr 59(5 Suppl):1203S–1212S. CrossRefPubMedGoogle Scholar
  6. 6.
    Mojica L, Luna-Vital DA, de Mejia EG (2017) Characterization of peptides from common bean protein isolates and their potential to inhibit markers of type-2 diabetes, hypertension and oxidative stress. J Sci Food Agr 97(8):2401–2410. CrossRefGoogle Scholar
  7. 7.
    Rui X, Boye JI, Ribereau S, Simpson BK, Prasher SO (2011) Comparative study of the composition and thermal properties of protein isolates prepared from nine Phaseolus vulgaris legume varieties. Food Res Int 44(8):2497–2504. CrossRefGoogle Scholar
  8. 8.
    Lynch JM, Barbano DM (1999) Kjeldahl nitrogen analysis as a reference method for protein determination in dairy products. J AOAC Int 82(6):1389–1398PubMedGoogle Scholar
  9. 9.
    Sommella E, Pepe G, Ventre G, Pagano F, Conte GM, Ostacolo C, Manfra M, Tenore GC, Russo M, Novellino E, Campiglia P (2016) Detailed peptide profiling of “Scotta”: from a dairy waste to a source of potential health-promoting compounds. Dairy Sci Technol 96(5):763–771. CrossRefGoogle Scholar
  10. 10.
    Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26(9–10):1231–1237CrossRefGoogle Scholar
  11. 11.
    McCue PP, Shetty K (2004) Inhibitory effects of rosmarinic acid extracts on porcine pancreatic amylase in vitro. Asia Pac J Clin Nutr 13(1):101–106PubMedGoogle Scholar
  12. 12.
    Wu J, Aluko RE, Muir AD (2002) Improved method for direct high-performance liquid chromatography assay of angiotensin-converting enzyme-catalyzed reactions. J Chromatogr A 950(1–2):125–130CrossRefGoogle Scholar
  13. 13.
    Tenore GC, Campiglia P, Ritieni A, Novellino E (2013) In vitro bioaccessibility, bioavailability and plasma protein interaction of polyphenols from Annurca apple (M. pumila Miller cv Annurca). Food Chem 141(4):3519–3524. CrossRefPubMedGoogle Scholar
  14. 14.
    Kubica P, Kot-Wasik A, Wasik A, Namiesnik J, Landowski P (2012) Modern approach for determination of lactulose, mannitol and sucrose in human urine using HPLC-MS/MS for the studies of intestinal and upper digestive tract permeability. J Chromatogr B Anal Technol Biomed Life Sci 907:34–40. CrossRefGoogle Scholar
  15. 15.
    Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE (2014) Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev 94(2):329–354. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Zapolska-Downar D, Kosmider A, Naruszewicz M (2005) Trans fatty acids induce apoptosis in human endothelial cells. J Physiol Pharmacol 56(4):611–625PubMedGoogle Scholar
  17. 17.
    Bergmark E, Calleman CJ, He F, Costa LG (1993) Determination of hemoglobin adducts in humans occupationally exposed to acrylamide. Toxicol Appl Pharmacol 120(1):45–54. CrossRefPubMedGoogle Scholar
  18. 18.
    Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120(4):483–495. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Moura FA, de Andrade KQ, dos Santos JC, Araujo OR, Goulart MO (2015) Antioxidant therapy for treatment of inflammatory bowel disease: does it work? Redox Biol 6:617–639. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Candela M, Astiasaran I, Bello J (1997) Cooking and warm-holding: effect on general composition and amino acids of kidney Beans (Phaseolus vulgaris), Chickpeas (Cicer arietinum), and Lentils (Lens culinaris). J Agric Food Chem 45(12):4763–4767. CrossRefGoogle Scholar
  21. 21.
    Wenyi W, Gonzalez DME (2005) A new frontier in soy bioactive peptides that may prevent age-related chronic diseases. Compr Rev Food Sci Food Saf 4(4):63–78. CrossRefGoogle Scholar
  22. 22.
    Power O, Jakeman P, FitzGerald RJ (2013) Antioxidative peptides: enzymatic production, in vitro and in vivo antioxidant activity and potential applications of milk-derived antioxidative peptides. Amino Acids 44(3):797–820. CrossRefPubMedGoogle Scholar
  23. 23.
    de Gouveia NM, Alves FV, Furtado FB, Scherer DL, Mundim AV, Espindola FS (2014) An in vitro and in vivo study of the alpha-amylase activity of phaseolamin. J Med Food 17(8):915–920. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Galvez RL, Young-In K, Ines GM, Maria LF, Kalidas S (2010) Effect of thermal treatment on phenolic compounds and functionality linked to type 2 diabetes and hypertension management of peruvian and brazilian bean cultivars (Phaseolus vulgaris L.) using in vitro methods. J Food Biochem 34(2):329–355. CrossRefGoogle Scholar
  25. 25.
    Meddings JB, Westergaard H (1989) Intestinal glucose transport using perfused rat jejunum in vivo: model analysis and derivation of corrected kinetic constants. Clin Sci (Lond) 76(4):403–413CrossRefGoogle Scholar
  26. 26.
    Fandriks L (2017) Roles of the gut in the metabolic syndrome: an overview. J Intern Med 281(4):319–336. CrossRefPubMedGoogle Scholar
  27. 27.
    Li X, Atkinson MA (2015) The role for gut permeability in the pathogenesis of type 1 diabetes—a solid or leaky concept? Pediatr Diabetes 16(7):485–492. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Teixeira TF, Souza NC, Chiarello PG, Franceschini SC, Bressan J, Ferreira CL, Peluzio Mdo C (2012) Intestinal permeability parameters in obese patients are correlated with metabolic syndrome risk factors. Clin Nutr 31(5):735–740. CrossRefPubMedGoogle Scholar
  29. 29.
    Alberti KG, Zimmet P, Shaw J, Group IDFETFC (2005) The metabolic syndrome—a new worldwide definition. Lancet 366(9491):1059–1062. CrossRefPubMedGoogle Scholar
  30. 30.
    Reverri EJ, Randolph JM, Steinberg FM, Kappagoda CT, Edirisinghe I, Burton-Freeman BM (2015) Black beans, fiber, and antioxidant capacity pilot study: examination of whole foods vs. functional components on postprandial metabolic, oxidative stress, and inflammation in adults with metabolic syndrome. Nutrients 7(8):6139–6154. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Tenore GC, Ritieni A, Campiglia P, Stiuso P, Di Maro S, Sommella E, Pepe G, D’Urso E, Novellino E (2015) Antioxidant peptides from “Mozzarella di Bufala Campana DOP” after simulated gastrointestinal digestion: in vitro intestinal protection, bioavailability, and anti-haemolytic capacity. J Funct Foods 15:365–375. CrossRefGoogle Scholar
  32. 32.
    Tagliazucchi D, Martini S, Bellesia A, Conte A (2015) Identification of ACE-inhibitory peptides from Phaseolus vulgaris after in vitro gastrointestinal digestion. Int J Food Sci Nutr 66(7):774–782. CrossRefPubMedGoogle Scholar
  33. 33.
    Hollander D (1999) Intestinal permeability, leaky gut, and intestinal disorders. Curr Gastroenterol Rep 1(5):410–416CrossRefGoogle Scholar
  34. 34.
    Lerner A, Matthias T (2015) Changes in intestinal tight junction permeability associated with industrial food additives explain the rising incidence of autoimmune disease. Autoimmun Rev 14(6):479–489. CrossRefPubMedGoogle Scholar
  35. 35.
    Liu Z, Li N, Neu J (2005) Tight junctions, leaky intestines, and pediatric diseases. Acta Paediatr 94(4):386–393CrossRefGoogle Scholar
  36. 36.
    Michielan A, D’Inca R (2015) Intestinal permeability in inflammatory bowel disease: pathogenesis, clinical evaluation, and therapy of leaky gut. Mediat Inflamm 2015:628157. CrossRefGoogle Scholar
  37. 37.
    Playford RJ, MacDonald CE, Calnan DP, Floyd DN, Podas T, Johnson W, Wicks AC, Bashir O, Marchbank T (2001) Co-administration of the health food supplement, bovine colostrum, reduces the acute non-steroidal anti-inflammatory drug-induced increase in intestinal permeability. Clin Sci (Lond) 100(6):627–633CrossRefGoogle Scholar
  38. 38.
    Scaldaferri F, Pizzoferrato M, Gerardi V, Lopetuso L, Gasbarrini A (2012) The gut barrier: new acquisitions and therapeutic approaches. J Clin Gastroenterol 46(Suppl):S12–S17. CrossRefPubMedGoogle Scholar
  39. 39.
    Drossman DA, Chey WD, Johanson JF, Fass R, Scott C, Panas R, Ueno R (2009) Clinical trial: lubiprostone in patients with constipation-associated irritable bowel syndrome—results of two randomized, placebo-controlled studies. Aliment Pharmacol Ther 29(3):329–341. CrossRefPubMedGoogle Scholar
  40. 40.
    Hayashi S, Kurata N, Yamaguchi A, Amagase K, Takeuchi K (2014) Lubiprostone prevents nonsteroidal anti-inflammatory drug-induced small intestinal damage by suppressing the expression of inflammatory mediators via EP4 receptors. J Pharmacol Exp Ther 349(3):470–479. CrossRefPubMedGoogle Scholar
  41. 41.
    Kato T, Honda Y, Kurita Y, Iwasaki A, Sato T, Kessoku T, Uchiyama S, Ogawa Y, Ohkubo H, Higurashi T, Yamanaka T, Usuda H, Wada K, Nakajima A (2017) Lubiprostone improves intestinal permeability in humans, a novel therapy for the leaky gut: a prospective randomized pilot study in healthy volunteers. PLoS One 12(4):e0175626. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Prosser C, Stelwagen K, Cummins R, Guerin P, Gill N, Milne C (2004) Reduction in heat-induced gastrointestinal hyperpermeability in rats by bovine colostrum and goat milk powders. J Appl Physiol (1985) 96(2):650–654. CrossRefGoogle Scholar
  43. 43.
    Rangel AHdN, Sales DC, Urbano SA, Galvão Junior JGB, Andrade Neto JCd, Macedo CdS (2016) Lactose intolerance and cow’s milk protein allergy. Food Sci Technol 36:179–187CrossRefGoogle Scholar
  44. 44.
    Franek F, Hohenwarter O, Katinger H (2000) Plant protein hydrolysates: preparation of defined peptide fractions promoting growth and production in animal cells cultures. Biotechnol Prog 16(5):688–692. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PharmacyUniversità di Napoli Federico IINaplesItaly

Personalised recommendations