European Food Research and Technology

, Volume 245, Issue 10, pp 2157–2171 | Cite as

Irrigation effects on the volatile composition and sensory profile of Albariño wines from two different terroirs

  • José M. Mirás-AvalosEmail author
  • Yolanda Bouzas-Cid
  • Emiliano Trigo-Córdoba
  • Ignacio Orriols
  • Elena Falqué
Original Paper


Volatile composition plays a fundamental role in wine aroma and quality. However, the concentrations of volatiles depend on climate conditions and agricultural practices, such as irrigation. The aim of the current study was to assess the effects of irrigation on the volatile composition and sensory characteristics of wines from Vitis vinifera (L.) cultivar ‘Albariño’ in two zones of NW Spain (Rías Baixas and Ribeiro) during three consecutive years (2012, 2013, and 2014). Irrigation was scheduled by the vine grower in Rías Baixas, whereas it was fixed at 50% of the estimated crop evapotranspiration in Ribeiro. Water was applied in August, mainly, in Rías Baixas and from mid-July to mid-August in Ribeiro. Irrigation significantly altered the concentrations of several volatiles, which differed between zones and years. For instance, wines from the irrigated treatment had lower concentrations of isoamyl acetate, 2-phenylethyl acetate, and ethyl hexanoate than those from the rain-fed treatment in Rías Baixas. In contrast, irrigation increased the concentrations of ethyl hexanoate and ethyl octanoate, while reduced those of free terpenes in wines from Ribeiro. Mainly, these differences between zones were caused by the climate conditions of each region.


Aroma Climate change Irrigation Sensory profile White wine 



This work was supported by the Instituto Nacional de Tecnología Agraria y Alimentaria (INIA) [Grant number RTA2011-00041-C02-01], with 80% FEDER funds. Y. Bouzas-Cid and E. Trigo-Córdoba thank INIA for their PhD. scholarships. J.M. Mirás-Avalos thanks Xunta de Galicia for his “Isidro Parga Pondal” contract.

Compliance with ethical standards

Conflict of interest

All authors declare no conflict of interest.

Compliance with ethical requirements

This article does not contain any studies with animal or human subjects.

Supplementary material

217_2019_3325_MOESM1_ESM.doc (120 kb)
Supplementary material 1 (DOC 119 kb)


  1. 1.
    Rapp A, Mandery H (1986) Wine aroma. Experientia 42:873–883CrossRefGoogle Scholar
  2. 2.
    Falqué E, Darriet P, Fernández E, Dubourdieu D (2008) Volatile profile and differentiation between Albariño wines from different origins. Int J Food Sci Technol 43:464–475CrossRefGoogle Scholar
  3. 3.
    Hirst MB, Richter CL (2016) Review of aroma formation through metabolic pathways of Saccharomyces cerevisiae in beverage fermentations. Am J Enol Vitic 67:361–370CrossRefGoogle Scholar
  4. 4.
    Jackson DI, Lombard PB (1993) Environmental and management practices affecting grape composition and wine quality—a review. Am J Enol Vitic 44:409–430Google Scholar
  5. 5.
    Robinson AL, Boss PK, Solomon PS, Trengove RD, Heymann H, Ebeler SE (2014) Origins of grape and wine aroma. Part 1 chemical components and viticultural impacts. Am J Enol Vitic 65(1):1–24CrossRefGoogle Scholar
  6. 6.
    Fraga H, Malheiro AC, Moutinho-Pereira J, Santos JA (2013) Future scenarios for viticultural zoning in Europe: ensemble projections and uncertainties. Int J Biometeorol 57:909–925CrossRefGoogle Scholar
  7. 7.
    Balint G, Reynolds AG (2017) Irrigation level and time of imposition impact vine physiology, yield components, fruit composition and wine quality of Ontario Chardonnay. Sci Hortic 214:252–272CrossRefGoogle Scholar
  8. 8.
    Cancela JJ, Trigo-Córdoba E, Martínez EM, Rey BJ, Bouzas-Cid Y, Fandiño M, Mirás-Avalos JM (2016) Effects of climate variability on irrigation scheduling in white varieties of Vitis vinifera (L.) of NW Spain. Agric Water Manag 170:99–109CrossRefGoogle Scholar
  9. 9.
    Vilanova M, Genisheva Z, Masa A, Oliveira JM (2010) Correlation between volatile composition and sensory properties in Spanish Albariño wines. Microchem J 95:240–246CrossRefGoogle Scholar
  10. 10.
    Versini G, Orriols I, Dalla Serra A (1994) Aroma components of Galician Albariño, Loureira and Godello wines. Vitis 33:165–170Google Scholar
  11. 11.
    Vilanova M, Fandiño M, Frutos-Puerto S, Cancela JJ (2019) Assessment fertigation effects on chemical composition of Vitis vinifera L. cv Albariño. Food Chem 278:636–643CrossRefGoogle Scholar
  12. 12.
    Vilanova M, Rodríguez-Nogales JM, Vila-Crespo J, Yuste J (2019) Influence of water regime on yield components, must composition and wine volatile compounds of Vitis vinifera cv Verdejo. Aus J Grape Wine Res 25:83–91CrossRefGoogle Scholar
  13. 13.
    Bouzas-Cid Y, Falqué E, Orriols I, Mirás-Avalos JM (2018) Effects of irrigation over three years on the amino acid composition of Treixadura (Vitis vinifera L.) musts and wines, and on the aromatic composition and sensory profiles of its wines. Food Chem 240:707–716CrossRefGoogle Scholar
  14. 14.
    Bouzas-Cid Y, Díaz-Losada E, Trigo-Córdoba E, Falqué E, Orriols I, Garde-Cerdán T, Mirás-Avalos JM (2018) Effects of irrigation over three years on the amino acid composition of Albariño (Vitis vinifera L.) musts and wines in two different terroirs. Sci Hortic 227:313–325CrossRefGoogle Scholar
  15. 15.
    Hernández-Orte P, Cacho JF, Ferreira V (2002) Relationship between varietal amino acid profile of grapes and wine aromatic composition. Experiments with model solutions and chemometric study. J Agric Food Chem 50:2891–2899CrossRefGoogle Scholar
  16. 16.
    Mirás-Avalos JM, Trigo-Córdoba E, Bouzas-Cid Y, Orriols-Fernández I (2016) Irrigation effects on the performance of grapevine (Vitis vinifera L.) cv.‘Albariño’ under the humid climate of Galicia. OENO One 50(4):183–194CrossRefGoogle Scholar
  17. 17.
    OIV (Office International de la Vigne et du Vin) (2009) Recueil des méthodes internationales d’analyse des vins et des, moûts edn. Office International de la Vigne et du Vin, ParisGoogle Scholar
  18. 18.
    Guth H (1997) Quantitation and sensory studies of character impact odorants of different white wine varieties. J Agric Food Chem 45:3027–3032CrossRefGoogle Scholar
  19. 19.
    Ferreira V, López R, Cacho JF (2000) Quantitative determination of the odorants of young red wines from different grape varieties. J Sci Food Agric 80:1659–1667CrossRefGoogle Scholar
  20. 20.
    Ferreira V (2010) Volatile aroma compounds and wine sensory attributes. In: Reynolds AG (ed) Managing wine quality: viticulture and wine quality. Woodhead Publishing Limited, Cambridge, pp 3–28CrossRefGoogle Scholar
  21. 21.
    Hopfer H, Heymann H (2014) Judging wine quality: do we need experts, consumers or trained panelists? Food Qual Prefer 32:221–233CrossRefGoogle Scholar
  22. 22.
    Vilanova M, Escudero A, Graña M, Cacho J (2013) Volatile composition and sensory properties of North West Spain white wines. Food Res Int 54:562–568CrossRefGoogle Scholar
  23. 23.
    ISO (1977) ISO norm 3591: Sensory analysis: apparatus wine tasting glass. International Organization for Standardization, GenèveGoogle Scholar
  24. 24.
    R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL Accessed 01/02/2019
  25. 25.
    Olkin I, Lou Y, Stokes L, Cao J (2015) Analysis of wine-tasting data: a tutorial. J Wine Econ 10:4–30CrossRefGoogle Scholar
  26. 26.
    Tonietto J, Carbonneau A (2004) A multicriteria climatic classification system for grape-growing regions worldwide. Agric For Meteorol 124:81–97CrossRefGoogle Scholar
  27. 27.
    van Leeuwen C, Tregoat O, Choné X, Bois B, Pernet D, Gaudillère JP (2009) Vine water status is a key factor in grape ripening and vintage quality for red Bordeaux wine. How can it be assessed for vineyard management purposes? J Int Sci Vigne Vin 43(3):121-134Google Scholar
  28. 28.
    Martínez EM, Rey BJ, Fandiño M, Cancela JJ (2016) Impact of water stress and nutrition on Vitis vinifera cv. ‘Albariño’: soil-plant water relationships, cumulative effects and productivity. Span J Agric Res 14(1):e1202CrossRefGoogle Scholar
  29. 29.
    Bell SJ, Henschke PA (2005) Implications of nitrogen nutrition for grapes, fermentation and wine. Aus J Grape Wine Res 11:242–295CrossRefGoogle Scholar
  30. 30.
    Deluc LG, Qulici DR, Derendit A, Grimplet J, Wheatley MD, Schlauch KA, Mérillon JM, Cushman JC, Cramer GR (2009) Water deficit induces cultivar-specific effects in multiple metabolic pathways affecting important flavor and quality traits throughout grape berry ripening. BMC Genom 10:212. CrossRefGoogle Scholar
  31. 31.
    Intrigliolo DS, Pérez D, Risco D, Yeves A, Castel JR (2012) Yield components and grape composition responses to seasonal water deficits in Tempranillo grapevines. Irrig Sci 30:339–349CrossRefGoogle Scholar
  32. 32.
    Fang YL, Sun W, Wan L, Xi ZM, Liu X, Zhang ZW (2013) Effects of regulated deficit irrigation (RDI) on wine grape growth and fruit quality. Sci Agric Sin 46(13):2730–2738Google Scholar
  33. 33.
    Qian MC, Fang Y, Shellie K (2009) Volatile composition of Merlot wine from different vine water status. J Agric Food Chem 57(16):7459–7463CrossRefGoogle Scholar
  34. 34.
    Shinohara T (1985) Gas chromatographic analysis of volatile fatty acids in wines. Agric Biol Chem 49:2211–2212Google Scholar
  35. 35.
    Ju YL, Liu M, Tu TY, Zhao XF, Yue XF, Zhang JX, Fang YL, Meng JF (2018) Effect of regulated deficit irrigation on fatty acids and their derived volatiles in ‘Cabernet Sauvignon’ grapes and wines of Ningxia, China. Food Chem 245:667–675CrossRefGoogle Scholar
  36. 36.
    Mirás-Avalos JM, Bouzas-Cid Y, Trigo-Córdoba E, Orriols I, Falqué E (2019) Effects of two different irrigation systems on the amino acid concentrations, volatile composition and sensory profiles of Godello musts and wines. Foods 8(4):135. CrossRefPubMedCentralGoogle Scholar
  37. 37.
    Chapman DM, Roby G, Ebeler SE, Guinard JX, Matthews MA (2005) Sensory attributes of Cabernet Sauvignon wines made from vines with different water status. Aus J Grape Wine Res 11:339–347CrossRefGoogle Scholar
  38. 38.
    Bouzas-Cid Y, Trigo-Córdoba E, Falqué E, Orriols I, Mirás-Avalos JM (2018) Influence of supplementary irrigation on the amino acid and volatile composition of Godello wines from the Ribeiro Designation of Origin. Food Res Int 111:715–723CrossRefGoogle Scholar
  39. 39.
    Talaverano I, Valdés E, Moreno D, Gamero E, Mancha L, Vilanova M (2017) The combined effect of water status and crop level on Tempranillo wine volatiles. J Sci Food Agric 97:1533–1542CrossRefGoogle Scholar
  40. 40.
    Escudero A, Gogorza B, Melús MA, Ortín N, Cacho J, Ferreira V (2004) Characterization of the aroma of a wine from macabeo. Key role played by compounds with low odor activity values. J Agric Food Chem 50:538–543Google Scholar
  41. 41.
    Casassa LF, Keller M, Harbertson JF (2015) Regulated deficit irrigation alters anthocyanins, tannins and sensory properties of Cabernet Sauvignon grapes and wines. Molecules 20(5):7820–7844CrossRefGoogle Scholar
  42. 42.
    Willwerth JJ, Reynolds AG, Lesschaeve I (2018) Sensory analysis of Ontario Riesling wines from various water status zones. OENO One 52(2):145–171CrossRefGoogle Scholar
  43. 43.
    Ou C, Du X, Shellie K, Ross C, Qian MC (2010) Volatile composition and sensory attributes of wine from cv. Merlot (Vitis vinifera L.) grown under differential levels of water deficit with or without Kaolin-based, foliar reflectant particle film. J Agric Food Chem 58:12890–12898CrossRefGoogle Scholar
  44. 44.
    Casassa LF, Larsen RC, Beaver CW, Mireles MS, Keller M, Riley WR, Smithyman R, Harbertson JF (2013) Sensory impact of extended maceration and regulated deficit irrigation on Washington State Cabernet Sauvignon wines. Am J Enol Vitic 64:505–514CrossRefGoogle Scholar
  45. 45.
    Ledderhof D, Reynolds AG, Manin L, Brown R (2014) Influence of water status on sensory profiles of Ontario Pinot noir wines. LWT-Food Sci Technol 57:65–82CrossRefGoogle Scholar
  46. 46.
    Lambrechts MG, Pretorius IS (2000) Yeast and its importance to wine aroma. A review. South Afr J Enol Vitic 21:97–129Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Estación de Viticultura e Enoloxía de Galicia (EVEGA-AGACAL)OurenseSpain
  2. 2.Depto. Química Analítica. Facultad de Ciencias, Universidade de Vigo. As Lagoas s/nOurenseSpain
  3. 3.Servizo de Prevención e Análise de Riscos. Dirección Xeral de Innovación e Industrias Agrarias e ForestaisSantiago de CompostelaSpain

Personalised recommendations