European Food Research and Technology

, Volume 245, Issue 9, pp 1899–1905 | Cite as

Structure and in vitro digestibility of grass pea (Lathyrus sativus L.) flour following transglutaminase treatment

  • A. Romano
  • C. V. L. GiosafattoEmail author
  • A. Al-Asmar
  • P. Masi
  • R. Romano
  • L. Mariniello
Original Paper


The impact of transglutaminase (TG) modification on microstructure and in vitro protein and starch digestibility of grass pea flour was investigated. Results demonstrated that grass pea flour proteins act as effective substrate of TG. Microstructural results showed that the addition of TG produced a more compact structure likely due to TG-catalyzed heteropolymers. Nutritional properties such as slowly digestible starch and expected glycemic index values followed the order: grass pea flour incubated in the absence of TG>grass pea flour incubated in the presence of TG>raw flour. The TG-catalyzed heteropolymers were easily digested as demonstrated by in vitro oral and gastric digestion carried out under physiological conditions. Therefore, TG-modified grass pea flour can be considered as a new source of starch and proteins suitable for feeding a large spectrum of population.


Grass pea flour In vitro digestion Food structure Transglutaminase Estimated glycemic index 



The authors thank Mrs Maria Fenderico for their technical collaboration.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.


  1. 1.
    Granati E, Bisignano V, Chiaretti D, Crino P, Polignano GB (2003) Characterization of Italian and exotic Lathyrus germplasm for quality traits. Genet Resour Crop Evol 50:273CrossRefGoogle Scholar
  2. 2.
    Tamburino R, Guida V, Pacifico S, Rocco M, Zarelli A, Parente A et al (2012) Nutritional values and radical scavenging capacities of grass pea (Lathyrus sativus L.) seeds in Valle Agricola district. Italy Aust J Crop Sci 6:149–156Google Scholar
  3. 3.
    Hillocks RJ, Maruthi MN (2012) Grass pea (Lathyrus sativus): is there a case for further crop improvement? Euphytica 186:647–654CrossRefGoogle Scholar
  4. 4.
    Yan Z-Y, Spencer PS, Li Z-X, Liang Y-M, Wang Y-F, Wang C-Y et al (2006) Lathyrus sativus (grass pea) and its neurotoxin ODAP. Phytochemistry 67:107–121CrossRefPubMedGoogle Scholar
  5. 5.
    Jiao CJ, Jiang JL, Ke LM, Cheng W, Li FM, Li ZX et al (2011) Factors affecting β-ODAP content in Lathyrus sativus and their possible physiological mechanisms. Food Chem Toxicol 49:543–549CrossRefPubMedGoogle Scholar
  6. 6.
    Boye J, Zare F, Pletch A (2010) Pulse proteins: processing, characterization, functional properties and applications in food and feed. Food Res Int 43:414–431CrossRefGoogle Scholar
  7. 7.
    Azarpazhooh E, Boye JI (2012) In: Siddiq M, Uebersax MA (eds) Dry beans and pulses production, processing and nutrition. Blackwell Publishing Ltd, OxfordGoogle Scholar
  8. 8.
    Jenkins DJ, Wolever TM, Jenkins AL, Thorne MJ, Lee R, Kalmusky J et al (1983) The glycaemic index of foods tested in diabetic patients: a new basis for carbohydrate exchange favouring the use of legumes. Diabetologia 24:257–264CrossRefPubMedGoogle Scholar
  9. 9.
    Sievenpiper JL, Kendall CWC, Esfahani A, Wong JMW, Carleton AJ, Jiang HY et al (2009) Effect of non-oil-seed pulses on glycaemic control: a systematic review and meta-analysis of randomised controlled experimental trials in people with and without diabetes. Diabetologia 52:1479–1495CrossRefPubMedGoogle Scholar
  10. 10.
    Ha V, Sievenpiper JL, de Souza RJ, Jayalath VH, Mirrahimi A, Agarwal A et al (2014) Effect of dietary pulse intake on established therapeutic lipid targets for cardiovascular risk reduction: a systematic review and metaanalysis of randomized controlled trials. Can Med Assoc J 186:E252–E262CrossRefGoogle Scholar
  11. 11.
    Jayalath VH, de Souza RJ, Sievenpiper JL, Ha V, Chiavaroli L, Mirrahimi A et al (2014) Effect of dietary pulses on blood pressure: a systematic review and meta-analysis of controlled feeding trials. Am J Hypertens 27:56–64CrossRefPubMedGoogle Scholar
  12. 12.
    Giosafatto CVL, Al-Asmar A, D’Angelo A, Roviello V, Esposito M, Mariniello L (2018) Preparation and characterization of bioplastics from grass pea flour cast in the presence of microbial transglutaminase. Coatings 8:435–436CrossRefGoogle Scholar
  13. 13.
    Romano A, Giosafatto CVL, Al-Asmar A, Masi P, Aponte M, Mariniello L (2019) Grass pea (Lathyrus sativus) flour: microstructure, physico-chemical properties and in vitro digestion. Eur Food Res Technol 245:191–198CrossRefGoogle Scholar
  14. 14.
    Mariniello L, Giosafatto CVL, Di Pierro P, Sorrentino A, Porta R (2007) Synthesis and resistance to in vitro proteolysis of transglutaminase-crosslinked phaseolin, the major storage protein from Phaseolus vulgaris. J Agric Food Chem 55:4717–4721CrossRefPubMedGoogle Scholar
  15. 15.
    Mariniello L, Giosafatto CVL, Di Pierro P, Sorrentino A, Porta R (2010) Swelling, mechanical and barrier properties of albedo-based films prepared in the presence of phaseolin crosslinked or not by transglutaminase. Biomacromolecules 11:2394–2398CrossRefPubMedGoogle Scholar
  16. 16.
    Sorrentino A, Giosafatto CVL, Sirangelo I, De Simone C, Di Pierro P, Porta R, Mariniello L (2012) Higher susceptibility to amyloid fibril formation of the recombinant ovine prion protein modified by transglutaminase. BBA-Mol Basis Dis 1822:1509–1515CrossRefGoogle Scholar
  17. 17.
    Romano A, Giosafatto CVL, Di Pierro P, Romano R, Masi P, Mariniello L (2016) Impact of transglutaminase treatment on properties and in vitro digestibility of white bean (Phaseolus vulgaris L.) flour. Food Res Int 88:239–246CrossRefGoogle Scholar
  18. 18.
    Rizzello CG, Hernández-Ledesma B, Fernández-Tomé S, Curiel JA, Pinto D, Marzani B et al (2015) Italian legumes: effect of sourdough fermentation on lunasin-like polypeptides. Microb Cell Fact 14:168–188CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Tavoletti S, Iommarini L, Crino P, Granati E (2005) Collection and evaluation of grasspea (Lathyrus sativus L.) germplasm of central Italy. Plant Breed 124:388–391CrossRefGoogle Scholar
  20. 20.
    Al-Asmar A, Naviglio D, Giosafatto CVL, Mariniello L (2018) Hydrocolloid-based coatings are effective at reducing acrylamide and oil content of French fries. Coatings 8:147–159CrossRefGoogle Scholar
  21. 21.
    Porta R, Di Pierro P, Rossi-Marquez G, Mariniello L, Kadivar M, Arabestani A (2015) Microstructure and properties of bitter vetch (Vicia ervilia) protein films reinforced by microbial transglutaminase. Food Hydrocoll 50:102–107CrossRefGoogle Scholar
  22. 22.
    AACC International (2002) Approved methods of analysis. Method 32-40.01. Resistant starch in starch samples and plant materials, vol 11. AACC International, St. PaulGoogle Scholar
  23. 23.
    Liu Q, Donner E, Yin Y, Huang RL, Fan MZ (2006) The physicochemical properties and in vitro digestibility of selected cereals, tubers and legumes grown in China. Food Chem 99:470–477CrossRefGoogle Scholar
  24. 24.
    Romano A, Mackie A, Farina F, Aponte M, Sarghini F, Masi P (2016) Characterisation, in vitro digestibility and expected glycemic index of commercial starches as uncooked ingredients. J Food Sci Technol 53:4126–4134CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Goñi I, Garcia-Alonso A, Saura-Calixto F (1997) A starch hydrolysis procedure to estimate glycemic index. Nutr Res 17:427–437CrossRefGoogle Scholar
  26. 26.
    Kjeldahl J (1883) Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern. Fresenius’ J Anal Chem 22:66–382Google Scholar
  27. 27.
    Giosafatto CVL, Rigby NM, Wellner N, Ridout M, Husband F, Mackie AR (2012) Microbial transglutaminase-mediated modification of ovalbumin. Food Hydrocoll 26:261–267CrossRefGoogle Scholar
  28. 28.
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Porta R, Di Pierro P, Sabbah M, Regalado-Gonzales C, Mariniello L, Kadivar M et al (2016) Blend films of pectin and bitter vetch (Vicia ervilia) proteins: properties and effect of transglutaminase. Innov Food Sci Emerg Technol 36:245–251CrossRefGoogle Scholar
  30. 30.
    Mariniello L, Di Pierro P, Esposito C, Sorrentino A, Masi P, Porta R (2003) Preparation and mechanical properties of edible pectin-soy flour films obtained in the absence or presence of transglutaminase. J Biotechnol 102:191–198CrossRefPubMedGoogle Scholar
  31. 31.
    Shand PJ, Ya H, Pietrasik Z, Wanasundara PKJPD (2008) Transglutaminase treatment of pea proteins: effect on physicochemical and rheological properties of heat-induced protein gels. Food Chem 107:692–699CrossRefGoogle Scholar
  32. 32.
    Bonet A, Rosell CM, Caballero PA, Gòmez M, Pérez-Munuera I, Lluch MA (2006) Glucose oxidase effect on dough rheology and bread quality: a study from macroscopic to molecular level. Food Chem 99:408–415CrossRefGoogle Scholar
  33. 33.
    Jenkins DJ, Wolever TM, Taylor RH, Barker H, Fielden H, Baldwin JM et al (1981) Glycemic index of foods: a physiological basis for carbohydrate exchange. Am J Clin Nutr 34:362–366CrossRefPubMedGoogle Scholar
  34. 34.
    Granfeldt Y, Björck I, Drews A, Tovar J (1992) An in vitro procedure based on chewing to predict metabolic response to starch in cereal and legume products. Eur J Clin Nutr 46:649–660PubMedGoogle Scholar
  35. 35.
    Englyst HN, Kingman SM, Cummings JH (1992) Classification and measurement of nutritionally important starch fractions. Eur J Clin Nutr 46:S33–S50PubMedGoogle Scholar
  36. 36.
    Rosin PM, Lajolo FM, Menezes EW (2002) Measurement and characterization of dietary starches. J Food Compos Anal 15:367–377CrossRefGoogle Scholar
  37. 37.
    Nayak B, De J Berrios J, Tang J (2014) Impact of food processing on the glycemic index (GI) of potato products. Food Res Int 56:35–46CrossRefGoogle Scholar
  38. 38.
    Romano A, Giosafatto CVL, Masi P, Mariniello L (2015) Impact of dehulling on the physico-chemical properties and in vitro protein digestion of common beans (Phaseolus vulgaris L.). Food Funct 6:1345–1351CrossRefPubMedGoogle Scholar
  39. 39.
    Shani-Levi C, Alvito P, Andrés A, Assunção R, Barberá R, Blanquet-Diot S et al (2017) Extending in vitro digestion models to specific human populations: expert perspectives, practical tools and bio-relevant information. Trends Food Sci Technol 60:52–63CrossRefGoogle Scholar
  40. 40.
    Tang C-H, Li L, Yang X-Q (2006) Influence of transglutaminase-induced crosslinking on in vitro digestibility of soy protein isolate. J Food Biochem 30:718–731CrossRefGoogle Scholar
  41. 41.
    Monogioudi E, Faccio G, Lille M, Poutanen K, Buchert J, Mattinen ML (2011) Effect of enzymatic crosslinking of β-casein on proteolysis by pepsin. Food Hydrocolloid 25:71–81CrossRefGoogle Scholar
  42. 42.
    Popović L, Stolić Ž, Čakarević J, Torbica A, Tomić J, Šijački M (2017) Biologically active digests from pumpkin oil cake protein: effect of cross-linking by transglutaminase. J Am Oil Chem Soc 94:1245–1251CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of AgriculturalUniversity of Naples “Federico II”PorticiItaly
  2. 2.CAISIALUniversity of Naples “Federico II”PorticiItaly
  3. 3.Department of Chemical SciencesUniversity of Naples “Federico II”NaplesItaly
  4. 4.Analysis, Poison control and Calibration Center (APCC)An-Najah National UniversityNablusPalestine

Personalised recommendations