Advertisement

European Food Research and Technology

, Volume 245, Issue 8, pp 1733–1741 | Cite as

The chemical composition and quality of the Parainema coffee cultivar under different shading conditions, as assessed by a leaf flavonol optical index

  • Lorenza TuccioEmail author
  • Patrizia Pinelli
  • Andrej Godina
  • Juan Manuel Medina
  • Giovanni Agati
Original Paper

Abstract

The introgressed cultivar of Parainema coffee was studied in two Honduras plantations that differed in their tree-shading system, namely intercropping as opposed to agroforestry. The cumulative sunlight effect on plants was determined by means of a non-destructive index of leaf flavonols, applied here for the first time to the coffee culture. The coffee seeds selectively harvested from shaded and full sunlight plants were analyzed for both their chemical composition and the derived cup quality. The high and constant shading of the agroforestry system determined both the heaviest coffee beans and an excellent rating of the beverage. Green beans under shade contained higher levels of caffeine and lower levels of trigonelline and mono-caffeoylquinic acids (other than chlorogenic acid) than those from sun-exposed plants. Banana-tree shading produced no differences in the green bean chemicals with respect to sunlight. The employed leaf flavonol optical index allowed to quantify the spatial variability of shading within the coffee plantations. Regardless of the light regime and site, Parainema coffee was classified as a “specialty”, an aspect that, together with its high seed weight and resistance to disease, can further favor its spread among coffee producers.

Keywords

Coffea arabica Shade Fluorescence-based sensor Antioxidants Sensorial quality Honduran coffee 

Notes

Acknowledgements

This work was supported by the Short Term Mobility Program 2016 of the Italian National Research Council (CNR) and has been made possible thanks to the hosting CATIE (Centro Agronomico de Investigación y Enseñanza) in Honduras. The tests were carried out at the Cooperativa Cafetalera Capucas Ltda (COCAFCAL, Santa Rosa de Copan, Honduras) at the Francis Geovany Melgar Estevez and Noé Fernando Portillo plantations with the help of the agronomists Rodrigo Redes and Alex Omar Meléndez Andino. We thank Dr. Mauro Centritto (Ivalsa, CNR—Firenze) for granting the use of the Dualex sensor.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This research does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Pendergrast M (2009) Coffee: second to oil? Tea Coffee Trade J 181(4):38Google Scholar
  2. 2.
    Borrella I, Mataix C, Carrasco-Gallego R (2015) Smallholder farmers in the speciality coffee industry: opportunities, constraints and the businesses that are making it possible. IDS Bull 46(3):29–44CrossRefGoogle Scholar
  3. 3.
    Jha S, Bacon CM, Philpott SM, Ernesto Méndez V, Läderach P, Rice RA (2014) Shade coffee: update on a disappearing refuge for biodiversity. Bioscience 64(5):416–428CrossRefGoogle Scholar
  4. 4.
    Ward R, Gonthier D, Nicholls C (2017) Ecological resilience to coffee rust: varietal adaptations of coffee farmers in Copán, Honduras. Agroecol Sustain Food Syst 41(9–10):1081–1098Google Scholar
  5. 5.
    Bertrand B, Guyot B, Anthony F, Lashermes P (2003) Impact of the Coffea canephora gene introgression on beverage quality of C. arabica. Theor Appl Genet 107(3):387–394CrossRefPubMedGoogle Scholar
  6. 6.
    Anzueto R (1985) Variedades de café resistentes a la roya. Revista Cafetalera (Guatemala) 257:21, 23, 25, 27–29Google Scholar
  7. 7.
    Bosselmann AS, Dons K, Oberthur T, Olsen CS, Ræbild A, Usma H (2009) The influence of shade trees on coffee quality in small holder coffee agroforestry systems in Southern Colombia. Agr Ecosyst Environ 129(1–3):253–260CrossRefGoogle Scholar
  8. 8.
    Joët T, Laffargue A, Descroix F, Doulbeau S, Bertrand B, De Kochko A, Dussert S (2010) Influence of environmental factors, wet processing and their interactions on the biochemical composition of green Arabica coffee beans. Food Chem 118(3):693–701CrossRefGoogle Scholar
  9. 9.
    Camargo A, Santinato R, Cortez J Aptidao climática para qualidade da bebida nas principais regioes cafeeiras de café Arábica. In: CONGRESSO Brasileiro de Pesquisas Cafeeiras, Araxá, Brasil, 27–30 Outubro 1992Google Scholar
  10. 10.
    Tolessa K, D’Heer J, Duchateau L, Boeckx P (2017) Influence of growing altitude, shade and harvest period on quality and biochemical composition of Ethiopian specialty coffee. J Sci Food Agric 97(9):2849–2857CrossRefPubMedGoogle Scholar
  11. 11.
    Vaast P, Bertrand B, Perriot J-J, Guyot B, Genard M (2006) Fruit thinning and shade improve bean characteristics and beverage quality of coffee (Coffea arabica L.) under optimal conditions. J Sci Food Agric 86(2):197–204CrossRefGoogle Scholar
  12. 12.
    Banegas Romero KY (2009) Identificación de las fuentes de variación que tienen efecto sobre la calidad del café (Coffea arabica) en los municipios de El Paraiso y Alauca, Honduras. Posgrado, Centro Agronómico y Tropical de Investigación y Enseñanza CATIE, Turrialba (Costa Rica)Google Scholar
  13. 13.
    Somporn C, Kamtuo A, Theerakulpisut P, Siriamornpun S (2012) Effect of shading on yield, sugar content, phenolic acids and antioxidant property of coffee beans (Coffea arabica L. cv. Catimor) harvested from north-eastern Thailand. J Sci Food Agric 92(9):1956–1963CrossRefPubMedGoogle Scholar
  14. 14.
    Bote AD, Struik PC (2011) Effects of shade on growth, production and quality of coffee (Coffea arabica) in Ethiopia. J Hortic For 3(11):336–341Google Scholar
  15. 15.
    Muschler RG (2001) Shade improves coffee quality in a sub-optimal coffee-zone of Costa Rica. Agrofor Syst 51(2):131–139CrossRefGoogle Scholar
  16. 16.
    Soto-Pinto L, Perfecto I, Castillo-Hernandez J, Caballero-Nieto J (2000) Shade effect on coffee production at the northern Tzeltal zone of the state of Chiapas, Mexico. Agr Ecosyst Environ 80(1–2):61–69CrossRefGoogle Scholar
  17. 17.
    Agati G, Cerovic ZG, Pinelli P, Tattini M (2011) Light-induced accumulation of ortho-dihydroxylated flavonoids as non-destructively monitored by chlorophyll fluorescence excitation techniques. Environ Exp Bot 73:3–9CrossRefGoogle Scholar
  18. 18.
    Goulas Y, Cerovic ZG, Cartelat A, Moya I (2004) Dualex: a new instrument for field measurements of epidermal ultraviolet absorbance by chlorophyll fluorescence. Appl Opt 43(23):4488–4496CrossRefPubMedGoogle Scholar
  19. 19.
    Tuccio L, Grassini G, Agati G (2016) Utilizzo di un indice ottico di flavonoli per determinare la variabilità spaziale dell’esposizione dei grappoli nella cv Vermentino. Acta Italus Hortus 19:185–186Google Scholar
  20. 20.
    Bilger W, Veit M, Schreiber L, Schreiber U (1997) Measurement of leaf epidermal transmittance of UV radiation by chlorophyll fluorescence. Physiol Plant 101(4):754–763CrossRefGoogle Scholar
  21. 21.
    Gardi C, Angelini M, Barceló S, Comerma J, Cruz Gaistardo C, Encina Rojas A, Jones A, Krasilnikov P, Mendonca Santos Brefin ML, Montanarella L (2014) Atlas de suelos de America Latina y el Caribe. Comisión Europea, Oficina de Publicaciones de la Unión Europea, LuxembourgGoogle Scholar
  22. 22.
    Cerovic ZG, Ounis A, Cartelat A, Latouche G, Goulas Y, Meyer S, Moya I (2002) The use of chlorophyll fluorescence excitation spectra for the non-destructive in situ assessment of UV-absorbing compounds in leaves. Plant Cell Environ 25(12):1663–1676CrossRefGoogle Scholar
  23. 23.
    SCAA (2015) SCAA Protocols. Cupping Specialty Coffee. Specialty Coffee Association of America. http://www.scaa.org/PDF/resources/cupping-protocols.pdf. Accessed 02 Feb 2018
  24. 24.
    Agati G, Cerovic ZG, Dalla Marta A, Di Stefano V, Pinelli P, Traversi ML, Orlandini S (2008) Optically-assessed preformed flavonoids and susceptibility of grapevine to Plasmopara viticola under different light regimes. Funct Plant Biol 35(1):77–84CrossRefGoogle Scholar
  25. 25.
    Dalla Marta A, Di Stefano V, Cerovic ZG, Agati G, Orlandini S (2008) Solar radiation affects grapevine susceptibility to Plasmopara viticola. Sci Agricola 65((SPE)):65–70CrossRefGoogle Scholar
  26. 26.
    Pollastrini M, Di Stefano V, Ferretti M, Agati G, Grifoni D, Zipoli G, Orlandini S, Bussotti F (2011) Influence of different light intensity regimes on leaf features of Vitis vinifera L. in ultraviolet radiation filtered condition. Environ Exp Bot 73:108–115CrossRefGoogle Scholar
  27. 27.
    Barthod S, Cerovic Z, Epron D (2007) Can dual chlorophyll fluorescence excitation be used to assess the variation in the content of UV-absorbing phenolic compounds in leaves of temperate tree species along a light gradient? J Exp Bot 58(7):1753–1760CrossRefPubMedGoogle Scholar
  28. 28.
    Pezzopane JRM, José PM, Gallo PB (2005) Radiação solar e saldo de radiação em cultivo de café a pleno sol e consorciado com banana” Prata Anã”. Bragantia Campinas 64(3):485–497CrossRefGoogle Scholar
  29. 29.
    Garedew W, Hailu BT, Lemessa F, Pellikka P, Pinard F (2017) Coffee shade tree management: an adaptation option for climate change impact for small scale coffee growers in South-West Ethiopia. In: Leal Filho W, Belay S, Kalangu J, Menas W, Munishi P, Musiyiwa K (eds) Climate change adaptation in Africa. Springer, Cham, pp 647–659CrossRefGoogle Scholar
  30. 30.
    Farah A, Monteiro MC, Calado V, Franca AS, Trugo LC (2006) Correlation between cup quality and chemical attributes of Brazilian coffee. Food Chem 98(2):373–380CrossRefGoogle Scholar
  31. 31.
    Argueta O (2015) Estudio de factibilidad para la producción de café oro en Santa Inés, Zamorano. Graduación, Zamorano: Escuela Agrícola PanamericanaGoogle Scholar
  32. 32.
    Farah A (2009) Coffee as a speciality and functional beverage. In: Paquin P (ed) Functional and speciality beverage technology. Cambrige University Pree, Cambridge, pp 370–395Google Scholar
  33. 33.
    Dessalegn Y, Labuscagne MT, Osthoff G, Herselman L (2007) Variation of green bean caffeine, chlorogenic acid, sucrose and trigolline contents among Ethiopian Arabica coffee accessories. SINET Ethiop J Sci 30(1):77–82Google Scholar
  34. 34.
    Dias RC, Benassi MDT (2015) Discrimination between arabica and robusta coffees using hydrosoluble compounds: is the efficiency of the parameters dependent on the roast degree? Beverages 1(3):127–139CrossRefGoogle Scholar
  35. 35.
    Baumann TW, Sondahl MR, Waldhauser SSM, Kretschmar JA (1998) Non-destructive analysis of natural variability in bean caffeine content of Laurina coffee. Phytochemistry 49(6):1569–1573CrossRefPubMedGoogle Scholar
  36. 36.
    Franca AS, Mendonça JC, Oliveira SD (2005) Composition of green and roasted coffees of different cup qualities. LWT Food Sci Technol 38(7):709–715CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Istituto di Fisica Applicata “Nello Carrara”-Consiglio Nazionale delle RicercheSesto FiorentinoItaly
  2. 2.DiSIA-Department of Statistics, Computer Sciences and Applications-PHYTOLAB Laboratory, Scientific and Technological PoleUniversity of FlorenceSesto FiorentinoItaly
  3. 3.Umami Area Association, Member of Specialty Coffee AssociationBagno a RipoliItaly
  4. 4.Centro Agronomico Tropical de Investigación y Enseñanza (CATIE)TegucigalpaHonduras

Personalised recommendations