Advertisement

High variability in parvalbumin beta 1 genes offers new molecular options for controlling the mislabeling in commercial Salmonids

  • Marta Muñoz-ColmeneroEmail author
  • Sharmeen Rahman
  • Jose Luis Martínez
  • Eva Garcia-Vazquez
Original Paper
  • 56 Downloads

Abstract

Fish consumption has many health benefits, but may encompass some risks such as allergic reactions. The main responsible of fish allergy is parvalbumins, being one of the most common parvalbumin beta 1 proteins (Pvalb1) in many fish species. IgE-mediated cross-reactivity may occur between Pvalb1 of different species, and there are also cases of species-specific allergic reactions for only a few fish species. The frequent exchanges Salmo and Oncorhynchus genera found in commercial products demonstrate the great need to continue investigating new tools for the control of mislabeling. In this study, we have amplified by PCR, the parvalbumin beta 1 gene, and analyzed the intron and exon diversity in three genera (Oncorhynchus, Salmo, and Salvelinus), to evaluate the variability of this gene in Salmonids’ group. High variability and occurrence of species-specific SNPs found make this gene suitable as powerful species identification tool. In addition, three putative proteins were inferred from translated DNA sequences, which are worthy to investigate, because of their potentially different effect in the fish allergic reaction of salmonid-sensitive consumers.

Keywords

Parvalbumin beta 1 gene Mislabeling Salmonids PCR cloning–sequencing Fish allergy 

Notes

Acknowledgements

The authors are grateful to the assistance of Daniel Serna Fuente (Sequencing Unit of the University of Oviedo).

Funding

This study was supported by the Regional Government of Asturias (Grant GRUPIN-2014-093). M. Muñoz-Colmenero holds a national Spanish Grant (reference AP-2010-5211).

Compliance with ethical standards

Conflict of interest

The authors have no competing interests regarding this study.

Compliance with ethics requirements

The samples analyzed in this work belong to the tissue collection stored in the Laboratory of Genetics of Natural Resources at the Department of Functional Biology of the University of Oviedo (Spain). Therefore this article does not contain any studies with human or animal subjects.

Supplementary material

217_2019_3278_MOESM1_ESM.tif (44 kb)
Online Resource S1: Scheme of parvalbumin beta 1 gene and situation of the designed primers, marked with arrows as 1 = Psal1 (forward); 2 = Psal2 (reverse); 3 = Psal3 (forward); 4 = Psal4 (reverse). The scheme was performed based on the sequence of Salmo salar with accession number FN544080 of GenBank database (TIFF 44 kb)
217_2019_3278_MOESM2_ESM.docx (11 kb)
Supplementary material 2 (DOCX 11 kb)
217_2019_3278_MOESM3_ESM.docx (18 kb)
Supplementary material 3 (DOCX 17 kb)

References

  1. 1.
    Perez-Gordo M, Cuesta-Herranz J, Maroto AS, Cases B, Ibáñez MD, Vivanco F et al (2011) Identification of sole parvalbumin as a major allergen: study of cross-reactivity between parvalbumins in a Spanish fish-allergic population. Clin Exp Allergy 41:750–758CrossRefGoogle Scholar
  2. 2.
    Costa Leal M, Pimentel T, Ricardo F, Rosa R, Calado R (2015) Seafood traceability: current needs, available tools, and biotechnological challenges for origin certification. Trends Biotechnol 33:331–336CrossRefGoogle Scholar
  3. 3.
    Wang Y, Crawford MA, Chen J, Li J, Ghebremeskel K, Campbell TC et al (2003) Fish consumption, blood docosahexaenoic acid and chronic diseases in Chinese rural populations. Comp Biochem Physiol A: Mol Integr Physiol 136:127–140CrossRefGoogle Scholar
  4. 4.
    Cawthorn DM, Steinman HA, Witthuhn RC (2011) Evaluating the availability of fish species on the South African market and the factors undermining sustainability and consumer choice. Food Control 22:1748–1759CrossRefGoogle Scholar
  5. 5.
    Zapatero Remón L, Alonso Lebrero A, Martín Fernández E, Martínez Molero MI (2005) Food protein-induced enterocolitis syndrome caused by fish. Allergol Immunopathol 33:312–316CrossRefGoogle Scholar
  6. 6.
    Saptarshi S, Sharp MF, Kamath SD, Lopata AL (2014) Antibody reactivity to the major fish allergen parvalbumin is determined by isoforms and impact of thermal processing. Food Chem 148:321–328CrossRefGoogle Scholar
  7. 7.
    Sharp MF, Lopata AL (2014) Fish allergy: in review. Clinic Rev Allerg Immunol 46:258–271CrossRefGoogle Scholar
  8. 8.
    Romano A, Di Fonso M, Giuffreda F, Quaratino D, Papa G, Palmieri V et al (1995) Diagnostic work-up for food-dependent, exercise-induced anaphylaxis. Allergy 50:817–824CrossRefGoogle Scholar
  9. 9.
    Leonard SA, Pecora V, Giovanni Fiocchi A, Nowak-Wegrzyn A (2018) Food protein-induced enterocolitis syndrome: a review of the new guidelines. World Allergy Organ J 11:4CrossRefGoogle Scholar
  10. 10.
    Aas K, Jebsen JW (1967) Studies of hypersensitivity to fish: partial purification and crystallization of a major allergenic component of cod. Int Arch Allergy Immunol 32:1–20CrossRefGoogle Scholar
  11. 11.
    Heffron JK, Moerland TS (2008) Parvalbumin characterization from the euryhaline stingray Dasyatis Sabina. Comp Biochem Physiol A Mol Integr Physiol 150:339–346CrossRefGoogle Scholar
  12. 12.
    Gazzaz SS, Rasco BA (1993) Parvalbumins in fish and their role as food allergens: a review. Rev Fish Sci 1:1–26CrossRefGoogle Scholar
  13. 13.
    Kuehn A, Scheuermann T, Hilger C, Hentges F (2010) Important variations in parvalbumin content in common fish species: a factor possibly contributing to variable allergenicity. Int Arch Allergy Immunol 153:359–366CrossRefGoogle Scholar
  14. 14.
    Cai QF, Liu GM, Li T, Hara K, Wang XC, Su WS et al (2010) Purification and characterization of parvalbumins, the major allergens in red stingray (Dasyatis akajei). J Agr Food Chem 58:12964–12969CrossRefGoogle Scholar
  15. 15.
    Radauer C, Biblin M, Wagner S, Mari A, Breiteneder H (2008) Allergens are distributed into few protein families and possess a restricted number of biochemical functions. J Allergy Clin Immunol 121:847–852CrossRefGoogle Scholar
  16. 16.
    Arif SH, Hasnain A (2010) A major cross-reactive fish allergen with exceptional stability: parvalbumin. Afr J Food Sci 4:109–114Google Scholar
  17. 17.
    Van Do T, Elsayed S, Florvaag E, Hordvik I, Endresen C (2005) Allergy to fish parvalbumins: studies on the cross-reactivity of allergens from 9 commonly consumed fish. J Allergy Clin Immunol 116:1314–1320CrossRefGoogle Scholar
  18. 18.
    Sicherer SH (2001) Clinical implications of cross-reactive food allergens. J Allergy Clin Immunol 108:881–890CrossRefGoogle Scholar
  19. 19.
    Raith M, Klug C, Sesztak-Greinecker G, Balic N, Focke M, Linhart B, Hemmer W, Swoboda I (2014) Unusual sensitization to parvalbumins from certain fish species. Ann Allergy Asthma Immunol 113:571–578CrossRefGoogle Scholar
  20. 20.
    Helbling A, Haydel R Jr, McCants ML, Musmand JJ, El-Dahr J, Lehrer SB (1999) Fish allergy: is cross-reactivity among fish species relevant? Double-blind placebo-controlled food challenge studies of fish allergic adults. Ann Allergy Asthma Immunol 83:517–523CrossRefGoogle Scholar
  21. 21.
    Muñoz-Colmenero M, Klett-Mingo M, Diaz E, Blanco O, Martinez JL, Garcia-Vazquez E (2015) Evolution of hake mislabeling niches in commercial markets. Food Control 54:267–274CrossRefGoogle Scholar
  22. 22.
    Naylor RL, Goldburg RJ, Primavera JH, Kautsky N, Beveridge MCM, Clay J et al (2000) Effect of aquaculture on world fish supplies. Nature 405:1017–1024CrossRefGoogle Scholar
  23. 23.
    Perez-Gordo M, Lin J, Bardina L, Pastor-Vargas C, Cases B, Vivanco F et al (2012) Epitope mapping of Atlantic salmon major allergen by peptide microarray immunoassay. Int Arch Allergy Immunol 157:31–40CrossRefGoogle Scholar
  24. 24.
    Swoboda I, Bugajska-Schretter A, Verdino P, Keller W, Sperr WR, Valent P et al (2002) Recombinant Carp parvalbumin, the major cross-reactive fish allergen: a tool for diagnosis and therapy of fish allergy. J Immunol 168:4576–4584CrossRefGoogle Scholar
  25. 25.
    Kuehn A, Hutt-Kempf E, Hilger C, Hentges F (2011) Clinical monosensitivity to salmonid fish linked to specific Ig–E epitopes on salmon and trout beta-parvalbumins. Allergy 66:298–305CrossRefGoogle Scholar
  26. 26.
    Kuehn A, Swoboda I, Arumugan K, Hilger C, Hentges F (2014) Fish allergens at a glance: variable allergenicity of parvalbumins, the major fish allergens. Front Immunol 5:1–8CrossRefGoogle Scholar
  27. 27.
    Cawthorn DM, Steinman HA, Witthuhn RC (2012) DNA barcoding reveals a high incidence of fish species misrepresentation and substitution on the South African market. Food Res Int 46:30–40CrossRefGoogle Scholar
  28. 28.
    Warner K, Timme W, Lowell B, Hirshfield M (2013) Oceana study reveals seafood fraud nationwide. OCEANA Publications. http://oceana.org/reports/oceana-study-reveals-seafood-fraud-nationwide. Accessed Feb 2016
  29. 29.
    Cline E (2012) Marketplace substitution of Atlantic salmon for Pacific salmon in Washington State detected by DNA barcoding. Food Res Int 45:388–393CrossRefGoogle Scholar
  30. 30.
    Xu YX, Zhu ZY, Lo LC, Wang CM, Lin G, Feng F et al (2006) Characterization of two parvalbumin genes and their association with growth traits in Asian seabass (Lates calcarifer). Anim Genet 37:266–268CrossRefGoogle Scholar
  31. 31.
    Rozen S, Skaletsky HJ (2000) Primer 3 on the WWW for general users for biologist programmers. In: Karwetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Human Press, Totowa, pp 365–386Google Scholar
  32. 32.
    Estoup A, Largiader CR, Perrot E, Chourrout D (1996) Rapid one tub DNA extraction for reliable PCR detection of fish polymorphic markers and transgenes. Mol Mar Biol Biotechnol 5:295–298Google Scholar
  33. 33.
    Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  34. 34.
    Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256CrossRefGoogle Scholar
  35. 35.
    Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr 19:716–722CrossRefGoogle Scholar
  36. 36.
    Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526Google Scholar
  37. 37.
    Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefGoogle Scholar
  38. 38.
    Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815CrossRefGoogle Scholar
  39. 39.
    ModWeb: a server for protein structure modeling. https://modbase.compbio.ucsf.edu/modweb/. Accessed 12 Mar 2015
  40. 40.
    Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and Analysis. J Comput Chem 25:1605–1612CrossRefGoogle Scholar
  41. 41.
    Hanák P, Laknerová I, Svátora M (2012) Second intron in the protein-coding region of the fish parvalbumin gene—a promising platform for polymerase chain reaction-based discrimination of fish meat of various species. J Food Nutr Res 51:81–88Google Scholar
  42. 42.
    Lindstrom C, Hordvik I, Endresen C, Elsayed S (1996) Cloning of two cDNAs encoding parvalbumin, the major allergen of Atlantic salmon (Salmo salar). Scand J Immunol 44:335–344CrossRefGoogle Scholar
  43. 43.
    Rencova E, Kostelnikova D, Tremlova B (2013) Detection of allergenic parvalbumin of Atlantic and Pacific herrings in fish productions by PCR. Food Addit Contam Part A 30:1679–1683CrossRefGoogle Scholar
  44. 44.
    Sun M, Liang C, Gao H, Lin CDM (2009) Detection of parvalbumin, a common fish allergen gene in food, by real-time polymerase chain reaction. J AOAC Int 92:234–240Google Scholar
  45. 45.
    Rehbein H (2013) Differentiation of fish species by PCR-based DNA analysis of nuclear genes. Eur Food Res Technol 236:979–990CrossRefGoogle Scholar
  46. 46.
    Machado-Schiaffino G, Martinez JL, Garcia-Vazquez E (2008) Detection of mislabeling in hake seafood employing mtSNPs-based methodology with identification of eleven hake species of the genus Merluccius. J Agric Food Chem 56:5091–5095CrossRefGoogle Scholar
  47. 47.
    Muñoz-Colmenero M, Juanes F, Dopico E, Martínez JL, Garcia-Vazquez E (2017) Economy matters: a study of mislabeling in salmon products from two regions, Alaska and Canada (Northwest of America) and Asturias (Northwest of Spain). Fish Res 195:180–185CrossRefGoogle Scholar
  48. 48.
    Friedberg F (2005) Parvalbumin isoforms in zebrafish. Mol Biol Rep 32:167–175CrossRefGoogle Scholar
  49. 49.
    Wang S, Hard JJ, Utter F (2001) Salmonid inbreeding: a review. Rev Fish Biol Fisher 11:301–319CrossRefGoogle Scholar
  50. 50.
    Griesmeier U, Vázquez-Cortés S, Bublin M, Radauer C, Ma Y, Briza P et al (2010) Expression levels of parvalbumins determine allergenicity of fish species. Allergy 65:191–198CrossRefGoogle Scholar
  51. 51.
    Zhang J (2003) Evolution by gene duplication: an update. Trends Ecol Evol 18:292–298CrossRefGoogle Scholar
  52. 52.
    Koop BF, Davidson WS (2008) Genomics and the genome duplication in Salmonids. In: Fisheries for global welfare and environment, 5th World Fisheries Congress, pp 77–86Google Scholar
  53. 53.
    Rehbein H (2007) Parvalbumin mRNA in raw and processed fillet of rainbow trout Oncorhynchus mykiss: determination of copy number and stability against heat and acid. Fish Sci 73:160–1165CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Marta Muñoz-Colmenero
    • 1
    Email author
  • Sharmeen Rahman
    • 1
  • Jose Luis Martínez
    • 2
  • Eva Garcia-Vazquez
    • 1
  1. 1.Laboratory of Genetics of Natural Resources, Area of Genetics, Department of Functional BiologyUniversity of OviedoOviedoSpain
  2. 2.Sequencing Unit of the University of OviedoOviedoSpain

Personalised recommendations