Advertisement

Influence of mechanical and thermal treatment on particle structure, leaching of alcohol insoluble substances and water binding properties of pectin-rich orange fibre

  • Kenneth KieserlingEmail author
  • Lale Meyer
  • Stephan Drusch
  • Sebastian Schalow
OriginalPaper

Abstract

Mechanical and thermal processings may affect the composition and the techno-functional properties of dietary fibre as a part of a complex food system. The aim of this study was to investigate the impact of a mechanical and thermal treatment alone or in combination on alcohol insoluble substance (AIS), the content of galacturonic acid (GalA), the water retention capacity (WRC) and the microstructure by scanning electron microscopy (SEM). Two samples of orange fibre with different particle size (coarse and fine) were investigated in an experimental design and evaluated with regard to particle size (d50) after treatment and their impact on network formation. Our study highlights a more pronounced susceptibility of the coarse fibre towards mechanical stress compared to the fine fibre with regard to particle size reduction. High-pressure homogenization (HPH) represents the crucial step regarding AIS release and the increase of WRC for both fibres. A mechanical treatment with additional thermal treatment maximises AIS release. GalA, as a marker for pectin in AIS, was detected in various amounts depending on the intensity of the treatment. Highest values for WRC were achieved for the coarse fibre as a consequence of both, particle size reduction and the formation of a stable network on a microstructural level.

Keywords

Orange pulp fibre Particle size Alcohol insoluble substance Galacturonic acid Water retention capacity Microstructure 

Notes

Acknowledgements

We acknowledge the cooperation with the working group of Cornelia Rauh and Christoph Fahrenson (both TU Berlin) for lyophilising samples and for conducting SEM measurements, respectively. Kenneth Kieserling gratefully acknowledges the PhD scholarship from the Friedrich-Naumann Foundation for Freedom.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Supplementary material

217_2019_3249_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 15 KB)
217_2019_3249_MOESM2_ESM.docx (18 kb)
Supplementary material 2 (DOCX 18 KB)
217_2019_3249_MOESM3_ESM.docx (17 kb)
Supplementary material 3 (DOCX 18 KB)

References

  1. 1.
    Boeing H, Bechthold A, Bub A, Ellinger S, Haller D, Kroke A, Leschik-Bonnet E, Muller MJ, Oberritter H, Schulze M, Stehle P, Watzl B, Müller MJ, Oberritter H, Schulze M, Stehle P, Watzl B (2012) Critical review: vegetables and fruit in the prevention of chronic diseases. Eur J Nutr 51:637–663.  https://doi.org/10.1007/s00394-012-0380-y CrossRefGoogle Scholar
  2. 2.
    Brownlee I, Chater P, Pearson J, Wilcox M (2017) Dietary fibre and weight loss: where are we now? Food Hydrocoll 68:186–191.  https://doi.org/10.1016/j.foodhyd.2016.08.029 CrossRefGoogle Scholar
  3. 3.
    Grigelmo-Miguel N, Martín-Belloso O (1999) Influence of fruit dietary fibre addition on physical and sensorial properties of strawberry jams. J Food Eng 41:13–21.  https://doi.org/10.1016/S0260-8774(99)00067-9 CrossRefGoogle Scholar
  4. 4.
    de Moraes Crizel T, Jablonski A, de Oliveira Rios A, Rech R, Flôres SH (2013) Dietary fiber from orange byproducts as a potential fat replacer. LWT Food Sci Technol 53:9–14.  https://doi.org/10.1016/j.lwt.2013.02.002 CrossRefGoogle Scholar
  5. 5.
    do Espírito Santo A, Perego P, Converti A, Oliveira M (2012) Influence of milk type and addition of passion fruit peel powder on fermentation kinetics, texture profile and bacterial viability in probiotic yoghurts. LWT Food Sci Technol 47:393–399.  https://doi.org/10.1016/j.lwt.2012.01.038 CrossRefGoogle Scholar
  6. 6.
    Robertson J, De Monredon F, Dysseler P, Guillon F, Amadò R, Thibault J (2000) Hydration properties of dietary fibre and resistant starch: a European collaborative study. LWT Food Sci Technol 33:72–79.  https://doi.org/10.1006/fstl.1999.0595 CrossRefGoogle Scholar
  7. 7.
    Elleuch M, Bedigian D, Roiseux O, Besbes S, Blecker C, Attia H (2011) Dietary fibre and fibre-rich by-products of food processing: characterisation, technological functionality and commercial applications: a review. Food Chem 124:411–421.  https://doi.org/10.1016/j.foodchem.2010.06.077 CrossRefGoogle Scholar
  8. 8.
    Tejada-Ortigoza V, Garcia-Amezquita L, Serna-Saldívar S, Welti-Chanes J (2016) Advances in the functional characterization and extraction processes of dietary fiber. Food Eng Rev 8:251–271.  https://doi.org/10.1007/s12393-015-9134-y CrossRefGoogle Scholar
  9. 9.
    Waldron K, Parker M, Smith A (2003) Plant cell walls and food quality. Compr Rev Food Sci Food Saf 2:128–146.  https://doi.org/10.1111/j.1541-4337.2003.tb00019.x CrossRefGoogle Scholar
  10. 10.
    Rosell CM, Santos E, Collar C (2009) Physico-chemical properties of commercial fibres from different sources: a comparative approach. Food Res Int 42:176–184.  https://doi.org/10.1016/j.foodres.2008.10.003 CrossRefGoogle Scholar
  11. 11.
    Moelants K, Cardinaels R, Van Buggenhout S, Van Loey A, Moldenaers P, Hendrickx M (2014) A review on the relationships between processing, food structure, and rheological properties of plant-tissue-based food suspensions. Compr Rev Food Sci Food Saf 13:241–260.  https://doi.org/10.1111/1541-4337.12059 CrossRefGoogle Scholar
  12. 12.
    Schalow S, Baloufaud M, Cottancin T, Fischer J, Drusch S (2018) Orange pulp and peel fibres: pectin-rich by-products from citrus processing for water binding and gelling in foods. Eur Food Res Technol 244:235–244.  https://doi.org/10.1007/s00217-017-2950-y CrossRefGoogle Scholar
  13. 13.
    Abid M, Yaich H, Hidouri H, Attia H, Ayadi M (2018) Effect of substituted gelling agents from pomegranate peel on colour, textural and sensory properties of pomegranate jam. Food Chem 239:1047–1054.  https://doi.org/10.1016/j.foodchem.2017.07.006 CrossRefGoogle Scholar
  14. 14.
    Abid M, Cheikhrouhou S, Cuvelier G, Leverrier C, Renard C, Attia H, Ayadi M (2017) Rheological properties of pomegranate peel suspensions: the effect of fibrous material and low-methoxyl pectin at acidic pH. Food Hydrocoll 62:174–181.  https://doi.org/10.1016/j.foodhyd.2016.08.008 CrossRefGoogle Scholar
  15. 15.
    Foster T (2011) Natural structuring with cell wall materials. Food Hydrocoll 25:1828–1832.  https://doi.org/10.1016/j.foodhyd.2011.05.016 CrossRefGoogle Scholar
  16. 16.
    Lopez-Sanchez P, Svelander C, Bialek L, Schumm S, Langton M (2011) Rheology and microstructure of carrot and tomato emulsions as a result of high-pressure homogenization conditions. J Food Sci 76:130–140.  https://doi.org/10.1111/j.1750-3841.2010.01894.x CrossRefGoogle Scholar
  17. 17.
    Christiaens S, Van Buggenhout S, Chaula D, Moelants K, David C, Hofkens J, Van Loey A, Hendrickx M (2012) In situ pectin engineering as a tool to tailor the consistency and syneresis of carrot purée. Food Chem 133:146–155.  https://doi.org/10.1016/j.foodchem.2012.01.009 CrossRefGoogle Scholar
  18. 18.
    Benítez V, Mollá E, Martín-Cabrejas M, Aguilera Y, López-Andréu F, Esteban R (2011) Effect of sterilisation on dietary fibre and physicochemical properties of onion by-products. Food Chem 127:501–507.  https://doi.org/10.1016/j.foodchem.2011.01.031 CrossRefGoogle Scholar
  19. 19.
    Willemsen K, Panozzo A, Moelants K, Debon S, Desmet C, Cardinaels R, Moldenaers P, Wallecan J, Hendrickx M (2017) Physico-chemical and viscoelastic properties of high pressure homogenized lemon peel fiber fraction suspensions obtained after sequential pectin extraction. Food Hydrocoll 72:358–371.  https://doi.org/10.1016/j.foodhyd.2017.06.020 CrossRefGoogle Scholar
  20. 20.
    Hua X, Xu S, Wang M, Chen Y, Yang H, Yang R (2017) Effects of high-speed homogenization and high-pressure homogenization on structure of tomato residue fibers. Food Chem 232:443–449.  https://doi.org/10.1016/j.foodchem.2017.04.003 CrossRefGoogle Scholar
  21. 21.
    Lopez-Sanchez P, Nijsse J, Blonk H, Bialek L, Schumm S, Langton M (2011) Effect of mechanical and thermal treatments on the microstructure and rheological properties of carrot, broccoli and tomato dispersions. J Sci Food Agric 91:207–217.  https://doi.org/10.1002/jsfa.4168 CrossRefGoogle Scholar
  22. 22.
    Van Buggenhout S, Wallecan J, Christiaens S, Debon S, Desmet C, Van Loey A, Hendrickx M, Mazoyer J (2015) Influence of high-pressure homogenization on functional properties of orange pulp. Innov Food Sci Emerg Technol 30:51–60.  https://doi.org/10.1016/j.ifset.2015.05.004 CrossRefGoogle Scholar
  23. 23.
    Day L, Xu M, Øiseth S, Lundin L, Hemar Y (2010) Dynamic rheological properties of plant cell-wall particle dispersions. Colloids Surf B Biointerfaces 81:461–467.  https://doi.org/10.1016/j.colsurfb.2010.07.041 CrossRefGoogle Scholar
  24. 24.
    Bickford R, Valverde C, Specialist A, Emirates UA, Arabia S (2017) EU-28 Citrus Semi-annual, 1–26Google Scholar
  25. 25.
    Sharma K, Mahato N, Cho M, Lee Y (2017) Converting citrus wastes into value-added products: economic and environmentally friendly approaches. Nutrition 34:29–46.  https://doi.org/10.1016/j.nut.2016.09.006 CrossRefGoogle Scholar
  26. 26.
    Fernández-López J, Sendra-Nadal E, Navarro C, Sayas E, Viuda-Martos M, Alvarez J (2009) Storage stability of a high dietary fibre powder from orange by-products. Int J Food Sci Technol 44:748–756.  https://doi.org/10.1111/j.1365-2621.2008.01892.x CrossRefGoogle Scholar
  27. 27.
    Haque A, Richardson R, Morris E (2001) Effect of fermentation temperature on the rheology of set and stirred yogurt. Food Hydrocoll 15:593–602.  https://doi.org/10.1016/S0268-005X(01)00090-X CrossRefGoogle Scholar
  28. 28.
    Prakash Maran J, Sivakumar V, Thirugnanasambandham K, Sridhar R (2013) Optimization of microwave assisted extraction of pectin from orange peel. Carbohydr Polym 97:703–709.  https://doi.org/10.1016/j.carbpol.2013.05.052 CrossRefGoogle Scholar
  29. 29.
    Blumenkrantz N, Asboe-Hansen G (1973) New method for quantitative determination of uronic acids. Anal Biochem 54:484–489.  https://doi.org/10.1016/0003-2697(73)90377-1 CrossRefGoogle Scholar
  30. 30.
    Atiemo-Obeng VA, Calabrese RV (2004) Rotor–stator mixing devices. In: Edward L, Atiemo-Obeng VA, Kresta S (eds) Handbook of industrial mixing: science and practice. Wiley, New York, pp 478–505.  https://doi.org/10.1002/0471451452 Google Scholar
  31. 31.
    Müller S, Kunzek H (1998) Material properties of processed fruit and vegetables I. Effect of extraction and thermal treatment on apple parenchyma. Z Leb Unters Forsch A 206:264–272CrossRefGoogle Scholar
  32. 32.
    Pickardt C, Dongowski G, Kunzek H (2004) The influence of mechanical and enzymatic disintegration of carrots on the structure and properties of cell wall materials. Eur Food Res Technol 219:229–239.  https://doi.org/10.1007/s00217-004-0960-z CrossRefGoogle Scholar
  33. 33.
    Moelants K, Cardinaels R, Jolie R, Verrijssen T, Van Buggenhout S, Zumalacarregui L, Van Loey A, Moldenaers P, Hendrickx M (2013) Relation between particle properties and rheological characteristics of carrot-derived suspensions. Food Bioprocess Technol 6:1127–1143.  https://doi.org/10.1007/s11947-011-0718-0 CrossRefGoogle Scholar
  34. 34.
    de Mello Andrade JM, de Jong EV, Henriques AT (2014) Byproducts of orange extraction: influence of different treatments in fiber composition and physical and chemical parameters. Braz J Pharm Sci 50:473–482.  https://doi.org/10.1590/S1984-82502014000300005 CrossRefGoogle Scholar
  35. 35.
    Ma M, Mu T (2016) Modification of deoiled cumin dietary fiber with laccase and cellulase under high hydrostatic pressure. Carbohydr Polym 136:87–94.  https://doi.org/10.1016/j.carbpol.2015.09.030 CrossRefGoogle Scholar
  36. 36.
    Redgwell R, Curti D, Gehin-Delval C (2008) Physicochemical properties of cell wall materials from apple, kiwifruit and tomato. Eur Food Res Technol 227:607–618.  https://doi.org/10.1007/s00217-007-0762-1 CrossRefGoogle Scholar
  37. 37.
    Caffall K, Mohnen D (2009) The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr Res 344:1879–1900.  https://doi.org/10.1016/j.carres.2009.05.021 CrossRefGoogle Scholar
  38. 38.
    Rolin C (2002) Commercial pectin preparations. In: Seymour GB, Knox JP (eds) Pectins and their manipulation. CRC Press/Blackwell, London, pp 222–241.  https://doi.org/10.1039/b212315k Google Scholar
  39. 39.
    Pasandide B, Khodaiyan F, Mousavi Z, Hosseini S (2017) Optimization of aqueous pectin extraction from Citrus medica peel. Carbohydr Polym 178:27–33.  https://doi.org/10.1016/j.carbpol.2017.08.098 CrossRefGoogle Scholar
  40. 40.
    Yapo B, Lerouge P, Thibault J, Ralet M (2007) Pectins from citrus peel cell walls contain homogalacturonans homogenous with respect to molar mass, rhamnogalacturonan I and rhamnogalacturonan II. Carbohydr Polym 69:426–435.  https://doi.org/10.1016/j.carbpol.2006.12.024 CrossRefGoogle Scholar
  41. 41.
    Wang W, Ma X, Jiang P, Hu L, Zhi Z, Chen J, Ding T, Ye X, Liu D (2016) Characterization of pectin from grapefruit peel: a comparison of ultrasound-assisted and conventional heating extractions. Food Hydrocoll 61:730–739.  https://doi.org/10.1016/j.foodhyd.2016.06.019 CrossRefGoogle Scholar
  42. 42.
    Guo X, Zhao W, Liao X, Hu X, Wu J, Wang X (2017) Extraction of pectin from the peels of pomelo by high-speed shearing homogenization and its characteristics. LWT Food Sci Technol 79:640–646.  https://doi.org/10.1016/j.lwt.2016.12.001 CrossRefGoogle Scholar
  43. 43.
    Santiago J, Kyomugasho C, Maheshwari S, Jamsazzadeh Kermani Z, Van de Walle D, Van Loey A, Dewettinck K, Hendrickx M (2018) Unravelling the structure of serum pectin originating from thermally and mechanically processed carrot-based suspensions. Food Hydrocoll 77:482–493.  https://doi.org/10.1016/j.foodhyd.2017.10.026 CrossRefGoogle Scholar
  44. 44.
    Colin-Henrion M, Mehinagic E, Renard C, Richomme P, Jourjon F (2009) From apple to applesauce: processing effects on dietary fibres and cell wall polysaccharides. Food Chem 117:254–260.  https://doi.org/10.1016/j.foodchem.2009.03.109 CrossRefGoogle Scholar
  45. 45.
    Debon S, Wallecan J, Mazoyer J (2012) A rapid rheological method for the assessment of the high pressure homogenization of citrus pulp fibres. Appl Rheol 22:1–11.  https://doi.org/10.3933/ApplRheol-22-63919 Google Scholar
  46. 46.
    Cadden A (1987) Comparative effects of particle size reduction on physical structure and water binding properties of several plant fibers. J Food Sci 52:1595–1599.  https://doi.org/10.1111/j.1365-2621.1987.tb05886.x CrossRefGoogle Scholar
  47. 47.
    Wallecan J, McCrae C, Debon S, Dong J, Mazoyer J (2015) Emulsifying and stabilizing properties of functionalized orange pulp fibers. Food Hydrocoll 47:32–37.  https://doi.org/10.1016/j.foodhyd.2015.01.009 CrossRefGoogle Scholar
  48. 48.
    Sangnark A, Noomhorm A (2003) Effect of particle sizes on functional properties of dietary fibre prepared from sugarcane bagasse. Food Chem 80:221–229.  https://doi.org/10.1016/s0308-8146(02)00257-1 CrossRefGoogle Scholar
  49. 49.
    Idrovo Encalada A, Basanta M, Fissore E, De’Nobili M, Rojas A (2016) Carrot fiber (CF) composite films for antioxidant preservation: particle size effect. Carbohydr Polym 136:1041–1051.  https://doi.org/10.1016/j.carbpol.2015.09.109 CrossRefGoogle Scholar
  50. 50.
    Ulbrich M, Flöter E (2014) Impact of high pressure homogenization modification of a cellulose based fiber product on water binding properties. Food Hydrocoll 41:281–289.  https://doi.org/10.1016/j.foodhyd.2014.04.020 CrossRefGoogle Scholar
  51. 51.
    Caprez A, Arrigoni E, Amadò R, Neukom H (1986) Influence of different types of thermal treatment on the chemical composition and physical properties of wheat bran. J Cereal Sci 4:233–239.  https://doi.org/10.1016/S0733-5210(86)80025-X CrossRefGoogle Scholar
  52. 52.
    Vetter S (2003) Aspekte der Wasserwechselwirkungen in dispersen Obst- und Gemüse-Modellsystemen, Diss. Technische Universität, Berlin.  https://doi.org/10.14279/depositonce-638. http://opus4.kobv.de/opus4-tuberlin/frontdoor/index/index/docId/545
  53. 53.
    BeMiller J, Kumari G (1972) beta-elimination in uronic acids: evidence for an ElcB mechanism. Carbohydr Res 25:419–428.  https://doi.org/10.1016/S0008-6215(00)81653-5 CrossRefGoogle Scholar
  54. 54.
    Ormerod A, Ralfs J, Jackson R, Milne J, Gidley M (2004) The influence of tissue porosity on the material properties of model plant tissues. J Mater Sci 39:529–538.  https://doi.org/10.1023/B:JMSC.0000011508.02563.93 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Kenneth Kieserling
    • 1
    Email author
  • Lale Meyer
    • 1
  • Stephan Drusch
    • 1
  • Sebastian Schalow
    • 1
  1. 1.Department of Food Technology and Food Material ScienceTechnische Universität BerlinBerlinGermany

Personalised recommendations