Advertisement

Effect of the herbs used in the formulation of a Spanish herb liqueur, Herbero de la Sierra de Mariola, on its chemical and functional compositions and antioxidant and antimicrobial activities

  • Hanán Issa-Issa
  • Eva Ivanišová
  • Luis Noguera-Artiaga
  • Attila Kántor
  • David López-Lluch
  • Miroslava Kačániová
  • Antoni Szumny
  • Ángel A. Carbonell-BarrachinaEmail author
OriginalPaper
  • 23 Downloads

Abstract

Herbero de la Sierra de Mariola is a traditional Spanish herb liqueur which can have up to 15 different plants. The aim of this study was to help in deciding which are the best suited herbs to be used to prepare a liqueur with the highest contents of bioactive compounds and their functional properties. Chemical parameters (FT-IR spectroscopy), total contents of bioactive compounds (polyphenols, flavonoids, and phenolic acids), sensory quality (total content of volatile compounds and aroma intensity), antioxidant activity (DPPH and ABTS+), and antimicrobial activity, and sensory intensity were the parameters studied. In general, the best highest contents of the bioactive compounds and functional activities were found in liqueurs of the Lamiaceae family. An optimized version of this traditional liqueur might contain (i) winter savory, (ii) fennel, (iii) thyme, and (iv) peppermint. This study can be an example of how the scientific knowledge can be used to optimize traditional products, such as an Herbero de la Sierra de Mariola, and why not also to support the advantages of these products to establish future marketing campaigns.

Keywords

Alcoholic beverages Antimicrobial activity Antioxidant activity Lamiaceae family Product optimization 

Notes

Acknowledgements

Authors want to thank Consejo Regulador Bebidas Espirituosas Tradicionales de Alicante (http://www.licoresdealicante.com/) for kindly providing the all liqueurs used in this study. Luis Noguera-Artiaga was funded by an FPU grant from the Spanish government (FPU014/01874).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

References

  1. 1.
    Martínez-Francés V, Hahn E, Ríos S, Rivera D, Reich E, Vila R, Cañigueral S (2017) Ethnopharmacological and chemical characterization of Salvia species used in Valencian traditional herbal preparations. Front Pharmacol 8.  https://doi.org/10.3389/fphar.2017.00467
  2. 2.
    European Commission (2018) E-SPIRIT-DRINKS. Database on Geographical Indications Protected in the European Community for Spirits Originating in Member States and Third Countries. http://ec.europa.eu/agriculture/spirits Accessed 28 Jan 2018
  3. 3.
    Ministerio de Agricultura PyA (2004) ORDEN APA/3382/2004, de 5 de octubre, por la que se ratifica la modificación del Reglamento de las Denominaciones Específicas «Aperitivo-Café de Alcoy», «Cantueso de Alicante ». In: «Herbero de la Sierra de Mariola (Alicante)», y «Anís de Alicante», y su Consejo Regulador. Consejo Regulador de las Bebidas Espirituosas Tradicionales de Alicante). BOE, MadridGoogle Scholar
  4. 4.
    Friedel M, Patz CD, Dietrich H (2013) Comparison of different measurement techniques and variable selection methods for FT-MIR in wine analysis. Food Chem 141:4200–4207.  https://doi.org/10.1016/j.foodchem.2013.06.120 CrossRefGoogle Scholar
  5. 5.
    Sánchez-Moreno C, Larrauri JA, Saura-Calixto F (1998) A procedure to measure the antiradical efficiency of polyphenols. J Sci Food Agric 76:270–276.  https://doi.org/10.1002/(SICI)1097-0010(199802)76:2%3C270::AID-JSFA945%3E3.0.CO;2-9 CrossRefGoogle Scholar
  6. 6.
    Giuffrè AM, Zappia C, Capocasale M (2017) Physicochemical stability of blood orange juice during frozen storage. Int J Food Prop 20:1930–1943.  https://doi.org/10.1080/10942912.2017.1359184 Google Scholar
  7. 7.
    Giuffrè AM, Zappia C, Capocasale M (2017) Effects of high temperatures and duration of heating on olive oil properties for food use and biodiesel production. JAOCS 94:819–830.  https://doi.org/10.1007/s11746-017-2988-9 CrossRefGoogle Scholar
  8. 8.
    Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237.  https://doi.org/10.1016/S0891-5849(98)00315-3 CrossRefGoogle Scholar
  9. 9.
    Singleton VR, J (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158Google Scholar
  10. 10.
    Willett WC (2002) Balancing life-style and genomics research for disease prevention. Science 296(5568):695–698.  https://doi.org/10.1126/science.1071055 CrossRefGoogle Scholar
  11. 11.
    Farmakopea Polska (2011) Farmakopea Polska. https://farmakopeapolska.wordpress.com/. Accessed 23 Jan 2018
  12. 12.
    Hernández F, Noguera-Artiaga L, Burló F, Wojdyło A, Carbonell-Barrachina AA, Legua P (2016) Physico-chemical, nutritional, and volatile composition and sensory profile of Spanish jujube (Ziziphus jujuba Mill.) fruits. J Sci Food Agric 96:2682–2691.  https://doi.org/10.1002/jsfa.7386 CrossRefGoogle Scholar
  13. 13.
    Hojjati M, Lipan L, Carbonell-Barrachina ÁA (2016) Effect of roasting on physicochemical properties of wild almonds (Amygdalus scoparia). JAOCS 93:1211–1220.  https://doi.org/10.1007/s11746-016-2868-8 CrossRefGoogle Scholar
  14. 14.
    Arzberger ULD (2008) Fourier transform infrared spectroscopy with multivariate analysis as a novel method for characterizing alcoholic strength, density, and total dry extract in spirits and liqueurs. Food Anal Met 1:18–22CrossRefGoogle Scholar
  15. 15.
    European Commission (2008) Regulation (EC) no 110/2008 of the european parliament and of the council on the definition, description, presentation, labelling and the protection of geographical indications of spirit drinks and repealing Council Regulation (EEC) No 1576/89. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:039:0016:0054:EN:PDF. Accessed 23 Jan 2018
  16. 16.
    Bekut M, Brkić S, Kladar N, Dragović G, Gavarić N, Božin B (2018) Potential of selected Lamiaceae plants in anti(retro)viral therapy. Pharmacol Res 133:301–314.  https://doi.org/10.1016/j.phrs.2017.12.016 CrossRefGoogle Scholar
  17. 17.
    Sytar O, Hemmerich I, Zivcak M, Rauh C, Brestic M (2018) Comparative analysis of bioactive phenolic compounds composition from 26 medicinal plants. Saudi J Biol Sci 25:631–641.  https://doi.org/10.1016/j.sjbs.2016.01.036 CrossRefGoogle Scholar
  18. 18.
    Sokoł-Łȩtowska A, Kucharska AZ, Wińska K, Szumny A, Nawirska-Olszańska A, Mizgier P, Wyspiańska D (2014) Composition and antioxidant activity of red fruit liqueurs. Food Chem 157:533–539.  https://doi.org/10.1016/j.foodchem.2014.02.083 CrossRefGoogle Scholar
  19. 19.
    Vacca V, Piga A, Del Caro A, Fenu PAM, Agabbio M (2003) Changes in phenolic compounds, colour and antioxidant activity in industrial red myrtle liqueurs during storage. Nahrung Food 47:442–447.  https://doi.org/10.1002/food.200390098 CrossRefGoogle Scholar
  20. 20.
    Li W, Beta T (2011) Evaluation of antioxidant capacity and aroma quality of anthograin liqueur. Food Chem 127:968–975.  https://doi.org/10.1016/j.foodchem.2011.01.066 CrossRefGoogle Scholar
  21. 21.
    Huang D, Boxin OU, Prior RL (2005) The chemistry behind antioxidant capacity assays. J Agric Food Chem 53:1841–1856.  https://doi.org/10.1021/jf030723c CrossRefGoogle Scholar
  22. 22.
    Rodríguez-Solana R, Salgado JM, Domínguez JM, Cortés-Diéguez S (2016) Phenolic compounds and aroma-impact odorants in herb liqueurs elaborated by maceration of aromatic and medicinal plants in grape marc distillates. J I Brewing 122:653–660.  https://doi.org/10.1002/jib.377 CrossRefGoogle Scholar
  23. 23.
    Casazza AA, Aliakbarian B, Sannita E, Perego P (2012) High-pressure high-temperature extraction of phenolic compounds from grape skins. Int J Food Sci Technol 47:399–405.  https://doi.org/10.1111/j.1365-2621.2011.02853.x CrossRefGoogle Scholar
  24. 24.
    Sperber WH (2009) Introduction to the microbiological spoilage of foods and beverages. In: Sperber WH, Doyle MP (eds) Compendium of the microbiological spoilage of foods and beverages. Springer, New York, pp 1–40CrossRefGoogle Scholar
  25. 25.
    Hammond JB, Price M A (1999) The control of microbiologica spoilage of beer. J I Brewing 105:113–120CrossRefGoogle Scholar
  26. 26.
    Harris KL, Bobe G, Bourquin LD (2009) Patulin surveillance in apple cider and juice marketed in Michigan. J Food Prot 72:1255–1261.  https://doi.org/10.4315/0362-028X-72.6.1255 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Hanán Issa-Issa
    • 1
  • Eva Ivanišová
    • 2
  • Luis Noguera-Artiaga
    • 1
  • Attila Kántor
    • 2
  • David López-Lluch
    • 3
  • Miroslava Kačániová
    • 4
    • 5
  • Antoni Szumny
    • 6
  • Ángel A. Carbonell-Barrachina
    • 1
    Email author
  1. 1.Grupo Calidad y Seguridad Alimentaria (CSA), Departamento de Tecnología Agroalimentaria, Escuela Politécnica Superior de Orihuela (EPSO)Universidad Miguel Hernández de Elche (UMH)OrihuelaSpain
  2. 2.Department of Plant Storage and Processing, Faculty of Biotechnology and Food ScienceSlovak University of Agriculture in NitraNitraSlovakia
  3. 3.Departamento de Economía AgroambientalIngeniería Cartográfica y Expresión Gráfica en la Ingeniería, EPSO, UMHOrihuelaSpain
  4. 4.Department of Microbiology, Faculty of Biotechnology and Food ScienceSlovak University of Agriculture in NitraNitraSlovakia
  5. 5.Bioenergetics and Food Analysis, Faculty of Biology and AgricultureRzeszow UniversityRzeszowPoland
  6. 6.Faculty of Food Science, Department of ChemistryWrocław University of Environmental and Life SciencesWrocławPoland

Personalised recommendations