Advertisement

Rheological behavior of soluble dietary fiber fractions isolated from artichoke residues

  • Cinthia Santo Domingo
  • Ana M. Rojas
  • Eliana N. Fissore
  • Lía N. GerschensonEmail author
OriginalPaper
  • 2 Downloads

Abstract

Cynara cardunculus var. scolymus agroindustrial by-products (stems, outer bracts, leaves) constitute 80% of the plant. These by-products may be recovered for the extraction of food additives and nutraceuticals. In this research, the rheological behavior of soluble dietary fiber fractions isolated from bracts (B) and stems (S) of artichoke was studied. Fractions were isolated by means of a heat treatment followed by processing with sodium citrate buffer (S1, B1) or buffer/protease (S2, B2) or hemicellulase (S3, B3) or both enzymes (S4, B4). They were composed, mainly, by pectin (degree of methylation, DM ≤ 53%) and inulin. When dissolved in water (2.00% w/v) with Ca2+ (40 mg/g pectin), fractions were sensitive to the ion showing shear thinning flow, with initial yield stress in the case of B2, B3 or S3. Citrate buffer extracted fractions (B1, S1) showed the highest viscosities, whereas extraction with buffer and both enzymes (B4, S4) produced the least viscous fiber fractions. At rest assays revealed the formation of gel-like networks that were stronger, in general, in the presence of higher pectin and inulin content, homogalacturonan proportion, and low methylation degree. Leftovers of artichoke can be used to extract soluble dietary fiber fractions that might be utilized as natural thickeners and gelling agents in foods, pharmaceutical and cosmetics, helping to add value to raw materials and to close the bioeconomy loop in relation to this plant.

Keywords

Cynara cardunculus Protease and hemicellulase Pectin and inulin Rheological behavior 

Notes

Acknowledgements

This study was financially supported by University of Buenos Aires (UBACyT 20020100100726/2011–2014 and 20020130100550BA/2014–2017), National Agency of Scientific and Technical Research (PICT 2012–1941 and 2013–2088) and CONICET (PIP 11220090100531/2010–2012 and 11220120100507/2013–2015). The authors acknowledge Dr Alicia Califano (CIDCA, CONICET-Universidad Nacional de La Plata) for the allowance to use the IRIS Rheohub software (USA) and Dr Lucas Marchetti for his help in the use of the software.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

References

  1. 1.
    Pandino G, Lombardo S, Lo Monaco A, Mauromicale G (2013) Choice of time of harvest influences the polyphenol profile of globe artichoke. J Funct Food 5:1822–1828CrossRefGoogle Scholar
  2. 2.
    Ceccarelli N, Curadi M, Picciarelli P, Martelloni L, Sbrana C, Giovannetti M (2010) Globe artichoke as a functional food. Med J Nutrition Metab 3:197–201CrossRefGoogle Scholar
  3. 3.
    Bianco V (1990) In: Bianco V, Pimpini F (eds) Orticoltura. Bologna, Patron Editore, pp 209–251Google Scholar
  4. 4.
    Pandino G, Lombardo S, Mauromicale G, Williamson G (2011) Profile of polyphenols and phenolic acids in bracts and receptacles of globe artichoke (Cynara cardunculus var. scolymus) germplasm. J Food Compos Anal 24:148–153CrossRefGoogle Scholar
  5. 5.
    Rotondo R, Firpo I, García SM, López Anido F, Cravero V, Cointry E (2012) Characterization of argentine’s globe artichoke (cynara cardunculus [l.] Var. Scolymus) cultivars by post-harvest related traits. Acta Hortic 942:473–478CrossRefGoogle Scholar
  6. 6.
    Lattanzio V, Kroon P, Linsalata V, Cardinali A (2009) Globe artichoke: a functional food and source of nutraceutical ingredients. J Funct Food 1:131–144CrossRefGoogle Scholar
  7. 7.
    Femenia A, Robertson A, Waldron K, Selvendran R (1998) Cauliflower (Brassica oleracea L.), globe artichoke (Cynara scolymus) and cichory witloof (Cichorium intybus) processing by-products as sources of dietary fibre. J Sci Food Agric 77:511–518CrossRefGoogle Scholar
  8. 8.
    Fissore E, Santo Domingo C, Pujol C, Damonte E, Rojas AM, Gerschenson L (2014) Upgrading of residues of bracts, stems and hearts of Cynara cardunculus L. var. scolymus to functional fractions enriched in soluble fiber. Food Funct 5:463–470CrossRefGoogle Scholar
  9. 9.
    Fissore E, Ponce N, Matkovic L, Stortz C, Rojas AM, Gerschenson L (2011) Isolation of pectin-enriched products from red beet (Beta vulgaris L. var. conditiva wastes: composition and functional properties. Food Sci Technol Int 17:517–527CrossRefGoogle Scholar
  10. 10.
    Willats W, Orfila C, Limberg G, Buchholt H, van Alebeek G, Voragen A (2001) Modulation of the degree and pattern of methyl-esterification of pectic homogalacturonan in plant cell walls. Implications for pectin methyl esterase action, matrix properties, and cell adhesion. J Biol Chem 276:19404–19413CrossRefGoogle Scholar
  11. 11.
    Gałkowska D, Długosz M, Juszczak L (2013) Effect of high methoxy pectin and sucrose on pasting, rheological, and textural properties of modified starch systems. Starch/Stärke 65:499–508CrossRefGoogle Scholar
  12. 12.
    Giannouli P, Richardson R, Morris E (2004) Effect of polymeric cosolutes on calcium pectinate gelation. Part 2. Dextrans and inulin. Carbohydr Polym 55:357–365CrossRefGoogle Scholar
  13. 13.
    Picout D, Richardson R, Rolin C, Abeysekera R, Morris E (2000) Ca2+-induced gelation of low methoxy pectin in the presence of oxidised starch. Part 1. Collapse of network structure. Carbohydr Polym 43:113–122CrossRefGoogle Scholar
  14. 14.
    Cameron R, Luzio G, Vasu P, Savary B, Williams M (2011) Enzymatic modification of a model homogalacturonan with the thermally tolerant pectin methylesterase from citrus: 1. Nanostructural characterization, enzyme mode of action, and effect of pH. J Agric Food Chem 59:2717–2724CrossRefGoogle Scholar
  15. 15.
    Luzio GA, Cameron R (2008) Demethylation of a model homogalacturonan with the salt-independent pectin methylesterase from citrus: Part II. Structure-function analysis. Carbohydr Polym 71:300–309CrossRefGoogle Scholar
  16. 16.
    Tanhatan-Nasseri A, Crépeau M, Thibault JF, Ralet MC (2011) Isolation and characterization of model homogalacturonans of tailored methylesterification patterns. Carbohydr Polym 86:1236–1243CrossRefGoogle Scholar
  17. 17.
    Sundar Raj A, Rubila S, Jayabalan R, Ranganathan T (2012) A review on pectin: chemistry due to general properties of pectin and its pharmaceutical uses. Sci Rep 1:550.  https://doi.org/10.4172/scientificreports.550 Google Scholar
  18. 18.
    Franck A, De Leenheer L (2005) In: Steinbüchel A, Rhee S (eds) Polysaccharides. Biopolymers Online, New York, pp 439–438Google Scholar
  19. 19.
    Roberfroid M (2004) In: Wolinsky I (ed) Inulin-type fructans functional food ingredients. CRC Press, Boca RatonCrossRefGoogle Scholar
  20. 20.
    Franck A (2006) In: Stephen AM, Phillips GO, Williams PA (eds) Food polysaccharides and their applications. CRC Press, London, pp 335–351CrossRefGoogle Scholar
  21. 21.
    Meyer D, Bayarri S, Tárrega A, Costell E (2011) Inulin as texture modifier in dairy products. Food Hydrocoll 25:1881–1890CrossRefGoogle Scholar
  22. 22.
    Wouters R (2010) In: Imeson A (ed) Food stabilisers, thickeners and gelling agents. Wiley-Blackwell, Chichester, pp 180–197Google Scholar
  23. 23.
    Roberfroid M (2005) Introducing inulin-type fructans. Br J Nutr 93:S13–S25CrossRefGoogle Scholar
  24. 24.
    Fissore E, Ponce N, Stortz C, Rojas AM, Gerschenson LN (2007) Characterisation of fiber obtained from pumpkin (Cucumis moschata Duch.) mesocarp through enzymatic treatment. Food Sci Technol Int 13:141–151CrossRefGoogle Scholar
  25. 25.
    Fissore E, Santo C, Gerschenson LN, Giannuzzi L (2015) A study of the effect of dietary fiber fractions obtained from artichoke (Cynara cardunculus L. var. scolymus) on the growth of intestinal bacteria associated with health. Food Funct 6:1667–1674CrossRefGoogle Scholar
  26. 26.
    Santo Domingo C, Soria M, Rojas A, Fissore E, Gerschenson L (2015) Protease and hemicellulase assisted extraction of dietary fiber from wastes of Cynara cardunculus. Int J Mol Sci 16:6057–6075CrossRefGoogle Scholar
  27. 27.
    Martín-Cabrejas M, Waldron K, Selvendran R (1994) Cell wall changes in spanish pear during ripening. J Plant Physiol 144:541–548CrossRefGoogle Scholar
  28. 28.
    Muggeridge M, Clay M (2001) In: Peter KV (ed) Handbook of herbs and spices. Woodhead Publishing, CambridgeGoogle Scholar
  29. 29.
    Wood PJ, Siddiqui IR (1971) Determination of methanol and its application for measurement of pectin ester content and pectin methyl esterase activity. Anal Biochem 39:418–428CrossRefGoogle Scholar
  30. 30.
    Williams PA, Sayers C, Viebke C, Senan C, Mazoyer J, Boulenguer P (2005) Elucidation of the emulsification properties of sugar beet pectin. J Agric Food Chem 53:3592–3597CrossRefGoogle Scholar
  31. 31.
    Evans M, Gallagher J, Ratcliffe I, Williams PA (2016) Determination of the degree of polymerisation of fructans from ryegrass and chicory using MALDI-TOF mass spectrometry and gel permeation chromatography coupled to multiangle laser light scattering. Food Hydrocoll 53:155–162CrossRefGoogle Scholar
  32. 32.
    Fissore E, Rojas A, Gerschenson L, Williams PA (2013) Butternut and beetroot pectins: characterization and functional properties. Food Hydrocoll 31:172–182CrossRefGoogle Scholar
  33. 33.
    Kim C, Yoo B (2006) Rheological properties of rice starch-xhantan gum mixtures. J Food Eng 75:120–128CrossRefGoogle Scholar
  34. 34.
    Fissore E, Rojas AM, Gerschenson L (2012) Rheological performance of pectin-enriched products isolated from red beet (Beta vulgaris L. var. conditiva) through alkaline and enzymatic treatments. Food Hydrocoll 26:249–260CrossRefGoogle Scholar
  35. 35.
    Ferry JD (1980) Viscoelastic properties of polymers, 2nd edn. Wiley, New YorkGoogle Scholar
  36. 36.
    Lapasin R, Pricl S (1995) Rheology of industrial polysaccharides. Theory and applications. Chapman & Hall, London, pp 250–494CrossRefGoogle Scholar
  37. 37.
    Quintana JM (2003) Microestructura, estabilidad y propiedades reológicas de emulsiones alimentarias estabilizadas con hidrocoloides. PhD-Thesis, Universidad Nacional de La Plata, Facultad de Ciencias Exactas, Departamento de Química (In Spanish)Google Scholar
  38. 38.
    Montgomery DC (2008) Design and analysis of experiments. Wiley, New YorkGoogle Scholar
  39. 39.
    McCleary BV, Blakeney AB (1999) Measurement of inulin and oligofructan. Cereal Food World 44:398–406Google Scholar
  40. 40.
    McCleary BV, Rossiter P (2004) Measurement of novel dietary fibers. J AOAC Int 87:707–711Google Scholar
  41. 41.
    Filisetti-Cozzi T, Carpita NC (1991) Measurement of uronic acids without interference from neutral sugars. Anal Biochem 197:157–162CrossRefGoogle Scholar
  42. 42.
    Sayah MY, Chabir R, Benyahia H, Kandri YR, Chahdi FO, Touzani H, Errachidi F (2016) Yield, esterification degree and molecular weight evaluation of pectins isolated from orange and grapefruit peels under different conditions. PLoS One,  https://doi.org/10.1371/journal.pone.0161751, 1–16
  43. 43.
    Azis BH, Chin B, Deacon MP, Harding SE, Pavlov GM (1999) Size and shape of inulin in dimethyl sulphoxide solution. Carbohydr Polym 38:231–234CrossRefGoogle Scholar
  44. 44.
    Mensink MA, Frijlink HW, Van der Voort Maarschalk K, Hinrichs WL (2015) Inulin, a flexible oligosaccharide. I: review of its physicochemical characteristics. Carbohydr Polym 130:405–419CrossRefGoogle Scholar
  45. 45.
    Panchev I, Delchev N, Kovacheva D, Slavov A (2011) Physicochemical characteristics of inulins obtained from Jerusalem artichoke (Helianthus tuberosus L.). Eur Food Res Technol 233:889–896CrossRefGoogle Scholar
  46. 46.
    MacDougall AJ, Ring SG (2004) In: Tomasik P (ed) Chemical and functional properties of food saccharides. CRC Press, Boca RatonGoogle Scholar
  47. 47.
    Cárdenas A, Higuera-Ciapara I, Goycoolea FM (1997) Rheology and aggregation of cactus (Opuntia ficus-indica) mucilage in solution. J Prof Assoc Cactus 1:152–199Google Scholar
  48. 48.
    Ross Murphy SB (1994) Rheological characterization of polymer gels and networks. Polym Gels Netw 2:229–237CrossRefGoogle Scholar
  49. 49.
    Powell DA, Morris ER, Gidley MJ, Rees DA (1982) Conformations and interactions of pectins. II. Influence of residue sequence on chain association in calcium pectate gels. J Mol Biol 155:517–531CrossRefGoogle Scholar
  50. 50.
    Vincken JP, Schols HA, Oomen RJ, McCann MC, Ulvskov P, Voragen AG, Visser RJ (2003) If homogalacturonan were a side chain of rhamnogalacturonan I. Implications for cell wall architecture. Plant Physiol 132:1781–1789CrossRefGoogle Scholar
  51. 51.
    Braccini I, Perez S (2001) Molecular basis of Ca2+-induced gelation in alginates and pectins: the egg-box model revisited. Biomacromol 2:1089–1096CrossRefGoogle Scholar
  52. 52.
    Fissore EN, Matkovic L, Wider E, Rojas AM, Gerschenson LN (2009) Rheological properties of pectin-enriched products isolated from butternut (Cucurbita moschata Duch ex Poiret). LWT-Food Sci Technol 42:1413–1421CrossRefGoogle Scholar
  53. 53.
    Picout DR, Ross-Murphy SB (2003) Rheology of biopolymer solutions and gels. Sci World J 3:105–121CrossRefGoogle Scholar
  54. 54.
    Ikeda S, Nishinari K (2001) Weak gel-type rheological properties of aqueous dispersions of non-aggregated k-carrageenan helices. J Agric Food Chem 49:4436–4441CrossRefGoogle Scholar
  55. 55.
    Paraskevopoulou A, Kiosseoglou V, Alevisopoulos S, Kasapis S (1997) Small deformation properties of model salad dressings prepared with reduced cholesterol egg yolk. J Texture Stud 28:221–237CrossRefGoogle Scholar
  56. 56.
    Alonso-Mougan M, Meijide F, Jover A, Rodriguez-Nuñez E, Vazquez-Tato J (2002) Rheological behaviour of an amide pectin. J Food Eng 55:123–129CrossRefGoogle Scholar
  57. 57.
    Moraes ICF, Fasolin LH, Cunha RL, Menegalli FC (2011) Dynamic and steady-shear rheological properties of Santan and guargums dispersed in yellow passion fruit pulp (Passiflora edulis f. flavicarpa). Braz J Chem Eng 28:483–494CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Cinthia Santo Domingo
    • 1
    • 2
  • Ana M. Rojas
    • 1
    • 3
  • Eliana N. Fissore
    • 1
    • 3
  • Lía N. Gerschenson
    • 1
    • 3
    Email author
  1. 1.Laboratorio de Optimización de la Calidad de Alimentos Preservados, Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, LOCAPUniversidad de Buenos AiresBuenos AiresArgentina
  2. 2.National Research Council of Argentina, CONICETBuenos AiresArgentina
  3. 3.CONICETBuenos AiresArgentina

Personalised recommendations