Lachancea thermotolerans as a tool to improve pH in red wines from warm regions
- 18 Downloads
Abstract
In warm regions, a typical problem is to reach high pH in must together with excessive sugar concentration, this problem is being increased by climatic change. In most of the wine regions of the south centre of Spain, it is easy to find red musts with pH values in the range 3.8–4.0 that after fermentation frequently exceed pH 4. This low acidity is accompanied by alcoholic degrees that are often higher than 14% vol. By yeast selection, we have obtained one strain of Lachancea (formerly Kluyveromyces) thermotolerans that reduces pH value approximately in 0.5 units making unnecessary the use of chemical acidification. The production of lactic acid by this strain is done using sugars as precursors, thus affecting the final alcoholic degree. Some collateral reduction of ethanol can be achieved, up to 0.5% v/v. The efficiency of this strain is higher than that of others commercially available today. The use of L. thermotolerans sequentially with Saccharomyces cerevisiae is a powerful tool to modulate acidity and ethanol in warm areas. In this work, the effectivity to reduce pH of a specific strain of L. thermotolerans has been verified in low and high pH musts in lab trials but also in semi-industrial fermentations with crushed grapes.
Keywords
Lachancea thermotolerans Sequential fermentation pH Ethanol Red wineNotes
Acknowledgements
This work was funded by the Ministerio de Economía y Competitividad (CDTI-MINECO) (Project IDI-20150925) with ERDF funds, 2014-2020 Operational Programme for Smart Growth. The authors thank J. A. Sánchez (Dpto. Química y Tecnología de Alimentos) for excellent technical assistance.
Compliance with ethical standards
Conflict of interest
The authors declare that there are no conflicts of interest.
Compliance with ethics requirements
This article does not contain any studies with human or animal subjects.
References
- 1.Kurtzman CP (2003) FEMS Yeast Res 4:233–245CrossRefGoogle Scholar
- 2.Senses-Ergul S, Ágoston R, Belák Á, Deák T (2006) Int J Food Microbiol 108:120–124CrossRefGoogle Scholar
- 3.Comitini F, Gobbi M, Domizio P, Romani C, Lencioni L, Mannazzu I, Ciani M (2011) Food Microbiol 28:873–882CrossRefGoogle Scholar
- 4.Gobbi M, Comitini F, Domizio P, Romani C, Lencioni L, Mannazzu I, Ciani M (2013) Food Microbiol 33:271–281CrossRefGoogle Scholar
- 5.Sauer M, Porro D, Mattanovich D, Branduardi P (2010) Biotechnol Genet Eng Rev 27:229–256CrossRefGoogle Scholar
- 6.Domizio P, House J, Joseph C, Bisson L, Bamforth C (2016) J Inst Brew 122:599–604CrossRefGoogle Scholar
- 7.Frost SC, Harbertson JF, Heymann H (2017) Food Qual Prefer 62:1–7CrossRefGoogle Scholar
- 8.Bonorden W, Nagel C, Powers J (1986) Am J Enol Vitic 37:143–148Google Scholar
- 9.Ibeas V, Correia AC, Jordão AM (2015) Food Res Int 69:364–372CrossRefGoogle Scholar
- 10.Morata A, Loira I, Tesfaye W, Bañuelos MA, González C, Suárez Lepe JA (2018) Fermentation 4:53–65CrossRefGoogle Scholar
- 11.Yéramian N, Chaya C, Suárez Lepe J (2007) J Agric Food Chem 55:912–919CrossRefGoogle Scholar
- 12.Schmidtke LM, Blackman JW, Agboola SO (2012) Production technologies for reduced alcoholic wines. J Food Sci 77:R25–41. https://doi.org/10.1111/j.1750-3841.2011.02448.x CrossRefGoogle Scholar
- 13.Reshef N, Morata A, Suárez-Lepe JA (2016) Towards the use of grapevine by products for reducing the alcohol content of wines. Biointerface Res Appl Chem 6:1531–1537Google Scholar
- 14.Loira I, Morata A, González C, Suárez-Lepe JA (2012) Food Bioprocess Technol 5:2787–2796CrossRefGoogle Scholar
- 15.Rolle L, Englezos V, Torchio F, Cravero F, Río Segade S, Rantsiou K, Giacosa S, Gambuti A, Gerbi V, Cocolin L (2018) Aust J Grape Wine Res 24:62–74CrossRefGoogle Scholar
- 16.Erten H, Campbell I (1953) J Inst Brew 59:207–215CrossRefGoogle Scholar
- 17.Pickering G, Heatherbell D, Barnes M (1998) Food Res Int 31:685–692CrossRefGoogle Scholar
- 18.Mira de Orduña R (2010) Food Res Int 43:1844–1855. https://doi.org/10.1016/j.foodres.2010.05.001 CrossRefGoogle Scholar
- 19.Balikci EK, Tanguler H, Jolly NP, Erten H (2016) Yeast 33:313–321CrossRefGoogle Scholar
- 20.Romano P, Suzzi G (1996) Appl Environ Microbiol 62:309–315Google Scholar
- 21.Bartowsky EJ, Henschke PA (2004) Int J Food Microbiol 96:235–252CrossRefGoogle Scholar
- 22.Peinado R, Moreno J, Medina M, Mauricio J (2004) Biotechnol Lett 26:757–762CrossRefGoogle Scholar
- 23.Azzolini M, Fedrizzi B, Tosi E, Finato F, Vagnoli P, Scrinzi C, Zapparoli G (2012) Eur Food Res Technol 235:303–313CrossRefGoogle Scholar
- 24.Loira I, Vejarano R, Bañuelos M, Morata A, Tesfaye W, Uthurry C, Villa A, Cintora I, Suárez-Lepe JA (2014) LWT Food Sci Technol 59:915–922CrossRefGoogle Scholar
- 25.Rojas V, Gil JV, Piñaga F, Manzanares P (2001) Int J Food Microbiol 70:283–289CrossRefGoogle Scholar
- 26.Rapp A, Pretorius P, Kugler D (1992) Dev Food Sci 28:485–522. https://doi.org/10.1016/B978-0-444-88558-6.50025-8 CrossRefGoogle Scholar
- 27.Bañuelos MA, Loira I, Escott C, Del Fresno JM, Morata A, Sanz PD, Otero L, Suárez-Lepe JA (2016) Food Bioprocess Technol 9:1769–1778CrossRefGoogle Scholar
- 28.Morata A, Loira I, Vejarano R, González C, Callejo MJ, Suárez-Lepe JA (2017) Trends Food Sci Technol 67:36–43CrossRefGoogle Scholar
- 29.Morata A, Loira I, Vejarano R, Bañuelos MA, Sanz PD, Otero L, Suárez-Lepe JA (2015) Food Bioprocess Technol 8:277–286CrossRefGoogle Scholar
- 30.Morata A, Bañuelos MA, Tesfaye W, Loira I, Palomero F, Benito S, Callejo MJ, Villa A, González MC, Suárez-Lepe JA (2015) Food Bioprocess Technol 8:1845–1853CrossRefGoogle Scholar
- 31.Escott C, Vaquero C, del Fresno JM, Bañuelos MA, Loira I, Han S, Bi Y, Morata A, Suárez-Lepe JA (2017) Food Bioprocess Technol 10:1540–1547CrossRefGoogle Scholar
- 32.Mora J, Barbas J, Mulet A (1990) Am J Enol Vitic 41:156–159Google Scholar
- 33.Liu S (2002) J Appl Microbiol 92:589–601CrossRefGoogle Scholar