Advertisement

European Food Research and Technology

, Volume 245, Issue 3, pp 717–732 | Cite as

Carotenoid profile and basic structural indicators of native Peruvian chili peppers

  • Eduardo Morales-SorianoEmail author
  • Agnese Panozzo
  • Roberto Ugás
  • Tara Grauwet
  • Ann Van Loey
  • Marc Hendrickx
Original Paper
  • 62 Downloads

Abstract

The cognition of original qualitative attributes of native Peruvian chili peppers elucidate their potential industrial exploitation. There is a lack of scientific information about chili pepper physicochemical and nutritional attributes, that hampers their immediate industrial use. Therefore, the aim of the present study was to characterize twenty Peruvian chili pepper landraces in terms of structural and nutritional properties. In particular, the Bostwick consistency index of chili purées, dry matter, dietary fibers and pectin content were determined. In addition, the color and carotenoid profile of each landrace were studied. A wide range of consistency and stability were found, and partially explained by the dry matter, dietary fiber and pectin content. C. annuum landraces displayed the highest dry matter and fiber content. Moreover, different carotenoid profiles were observed, being β-carotene the most abundant in almost all the samples. Capsanthin was present only in red landraces, while yellow ones had low total carotenoid content. High Retinol Activity Equivalent levels were determined for red peppers, while high insoluble dietary fiber level was found in all the samples. Cluster analysis, including all the chili pepper attributes, showed no relation between taxonomical classification and chili peppers structural, sensorial, and nutritional characteristics. Unique features of studied chili pepper landraces presented in this work should be considered during their industrial processing. In this context, these results might be considered a starting point for processing design and for the proper valorization of this raw material.

Keywords

Bostwick consistency index Dietary fiber Pectin Carotenoids Provitamin A Peruvian chili pepper 

Notes

Acknowledgements

This work is financially supported by VLIR-UOS scholarship (leading author) and research funds (germplasm at UNALM) through the IUC program at Universidad Nacional Agraria La Molina in Peru (VLIR-UOS-UNALM).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethic requirements

This article does not contain any studies with humans or animal subjects.

Supplementary material

217_2018_3193_MOESM1_ESM.docx (885 kb)
Supplementary material 1 (DOCX 884 KB)
217_2018_3193_MOESM2_ESM.docx (25 kb)
Supplementary material 2 (DOCX 25 KB)

References

  1. 1.
    FAO. FAOSTAT (Internet) (2018) Available from: http://www.fao.org/faostat/en/#data/QC. Accessed 30 Apr 2018
  2. 2.
    Bosland PW, Votava E (2012) Peppers. Vegetable and spice capsicums, 2nd edn. CABI, Wallingford, 230 pGoogle Scholar
  3. 3.
    Jäger M, Jiménez A, Amaya K (2013) Las cadenas de valor de los ajíes nativos de Perú. Compilación de los estudios realizados dentro del marco del proyecto “Rescate y Promoción de Ajíes Nativos en su Centro de Origen” para Perú. Bioversity International, Cali, p 90Google Scholar
  4. 4.
    Christiaens S, Mbong VB, Van Buggenhout S, David CC, Hofkens J, Van Loey AM et al. Influence of processing on the pectin structure-function relationship in broccoli purée. Innov Food Sci Emerg Technol (Internet). 2012;15:57.  https://doi.org/10.1016/j.ifset.2012.02.011 Google Scholar
  5. 5.
    Martínez R, Torres P, Meneses M, Figueroa JG, Pérez-Álvarez J, Viuda-Martos M Chemical, technological and in vitro antioxidant properties of mango, guava, pineapple and passion fruit dietary fibre concentrate. Food Chem (Internet). 2012;135:1520. Available from:  https://doi.org/10.1016/j.foodchem.2012.05.057 Google Scholar
  6. 6.
    McKee LH, Latner TA. Underutilized sources of dietary fiber: a review. Plant Foods Hum Nutr (Internet). 2000;55(4):285.  https://doi.org/10.1023/A:1008144310986 Google Scholar
  7. 7.
    Guzman I, Bosland PW, O’Connell MA. Heat, color, and flavor compounds in capsicum fruit. In: Gang DR, editor. The biological activity of phytochemicals (Internet). New York Springer; 2011. p. 109. Available from:  https://doi.org/10.1007/978-1-4419-7299-6 Google Scholar
  8. 8.
    Minguez-Mosquera MI, Hornero-Mendez D. Separation and quantification of the carotenoid pigments in red peppers (Capsicum annuum L.), paprika, and oleoresin by reversed-phase HPLC. J Agric Food Chem (Internet). 1993 Oct;41(10):1616.  https://doi.org/10.1021/jf00034a018 Google Scholar
  9. 9.
    Meckelmann SW, Riegel DW, van Zonneveld MJ, Ríos L, Peña K, Ugas R et al (2013) Compositional characterization of native peruvian chili peppers (Capsicum spp.). J Agric Food Chem (Internet). Mar 13;61(10):2530.  https://doi.org/10.1021/jf304986q Google Scholar
  10. 10.
    Rodríguez-Burruezo A, González-Mas MC, del Nuez F (2010) Carotenoid composition and vitamin A value in Ají (Capsicum baccatum L.) and Rocoto (C. pubescens R. & P.), 2 pepper species from the Andean region. J Food Sci 75(8):S446.  https://doi.org/10.1111/j.1750-3841.2010.01795.x Google Scholar
  11. 11.
    Rao A, Rao L (2007) Carotenoids and human health. Pharmacol Res 55(3):207.  https://doi.org/10.1016/j.phrs.2007.01.012 Google Scholar
  12. 12.
    Krinsky NI, Johnson EJ (2005) Carotenoid actions and their relation to health and disease. Mol Aspects Med 26(6):459Google Scholar
  13. 13.
    Schweiggert U, Kammerer DR, Carle R, Schieber A (2005) Characterization of carotenoids and carotenoid esters in red pepper pods (Capsicum annuum L.) by high-performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry. Rapid Commun Mass Spectrom 19(18):2617Google Scholar
  14. 14.
    Suzuki K, Mori M, Ishikawa K, Takizawa K, Nunomura O (2007) Carotenoid composition in mature Capsicum annuum. Food Sci Technol Res 13(1):77Google Scholar
  15. 15.
    Topuz A, Ozdemir F (2007) Assessment of carotenoids, capsaicinoids and ascorbic acid composition of some selected pepper cultivars (Capsicum annuum L.) grown in Turkey. J Food Compos Anal 20(7):596Google Scholar
  16. 16.
    Giuffrida D, Dugo P, Torre G, Bignardi C, Cavazza A, Corradini C et al. Characterization of 12 capsicum varieties by evaluation of their carotenoid profile and pungency determination. Food Chem (Internet). 2013;140(4):794.  https://doi.org/10.1016/j.foodchem.2012.09.060 Google Scholar
  17. 17.
    Kim JS, An CG, Park JS, Lim YP, Kim S. Carotenoid profiling from 27 types of paprika (Capsicum annuum L.) with different colors, shapes, and cultivation methods. Food Chem (Internet). 2016;201:64.  https://doi.org/10.1016/j.foodchem.2016.01.041 Google Scholar
  18. 18.
    Hornero-Méndez D, Mínguez-Mosquera MI (2000) Xanthophyll esterification accompanying carotenoid overaccumulation in chromoplast of Capsicum annuum ripening fruits is a constitutive process and useful for ripeness index. J Agric Food Chem 48(5):1617Google Scholar
  19. 19.
    Hornero-Méndez D, Gómez-Ladrón de Guevara R, Mínguez-Mosquera MI (2000) Carotenoid biosynthesis changes in five red pepper (Capsicum annuum L.) cultivars during ripening. Cultivar selection for breeding. J Agric Food Chem 48(9):3857.  https://doi.org/10.1021/jf991020r Google Scholar
  20. 20.
    Guerra-Vargas M, Jaramillo-Flores ME, Dorantes-Alvarez L, Hernández-Sánchez H Carotenoid retention in canned pickled jalapeno peppers and carrots as affected by sodium chloride, acetic acid, and pasteurization. J Food Sci (Internet) (2001 66(4):620.  https://doi.org/10.1111/j.1365-2621.2001.tb04611.x Google Scholar
  21. 21.
    Cervantes-Paz B, Yahia EM, De Jesús Ornelas-Paz J, Victoria-Campos CI, Ibarra-Junquera V, Pérez-Martínez JD et al. Antioxidant activity and content of chlorophylls and carotenoids in raw and heat-processed Jalapeño peppers at intermediate stages of ripening. Food Chem (Internet). 2014;146:188. Available from:  https://doi.org/10.1016/j.foodchem.2013.09.060 Google Scholar
  22. 22.
    Giuffrida D, Dugo P, Torre G, Bignardi C, Cavazza A, Corradini C et al Evaluation of carotenoid and capsaicinoid contents in powder of red chili peppers during one year of storage. Food Res Int (Internet). 2014;65:163. Available from:  https://doi.org/10.1016/j.foodres.2014.06.019 Google Scholar
  23. 23.
    Rodríguez-Burruezo A, Prohens J, Raigón MD, Nuez F. Variation for bioactive compounds in ají (Capsicum baccatum L.) and rocoto (C. pubescens R. & P.) and implications for breeding. Euphytica (Internet). 2009 Nov 13;170(1–2):169. Available from:  https://doi.org/10.1007/s10681-009-9916-5 Google Scholar
  24. 24.
    Morales-Soriano E, Kebede B, Ugás R, Grauwet T, Loey A, Van Hendrickx M (2018) Flavor characterization of native Peruvian chili peppers through integrated aroma fingerprinting and pungency profiling. Food Res Int 109:250.  https://doi.org/10.1016/j.foodres.2018.04.030 Google Scholar
  25. 25.
    Ugás R (2012) Clasificación de los ajíes del Perú. In: Ugás R, Mendoza V (eds) El punto de ají. Programa de Hortalizas, UNALM & Programa VLIR-UNALM, Lima, p 8. http://www.lamolina.edu.pe/hortalizas/webdocs/PUNTODE AJI.pdf. Accessed 30 Apr 2018
  26. 26.
    AOAC, Association of Officiating Analytical Chemists (2005) Official methods of analysis. 18th ed. AOAC, WashingtonGoogle Scholar
  27. 27.
    Kosmala M, Milala J, Kołodziejczyk K, Markowski J, Zbrzeźniak M, Renard CMGC (2013) Dietary fiber and cell wall polysaccharides from plum (Prunus domestica L.) fruit, juice and pomace: comparison of composition and functional properties for three plum varieties. Food Res Int 54(2):1787Google Scholar
  28. 28.
    McFeeters RF, Armstrong SA (1984) Measurement of pectin methylation in plant cell walls. Anal Biochem 139(1):212Google Scholar
  29. 29.
    Ahmed AER, Labavitch JM (1978 Oct;1(4):361) A simplified method for accurate determination of cell wall uronide content. J Food Biochem (Internet). Available from:  https://doi.org/10.1111/j.1745-4514.1978.tb00193.x Google Scholar
  30. 30.
    Romano G, Argyropoulos D, Nagle M, Khan MT, Müller J. Combination of digital images and laser light to predict moisture content and color of bell pepper simultaneously during drying. J Food Eng (Internet). 2012;109(3):438. Available from:  https://doi.org/10.1016/j.jfoodeng.2011.10.037 Google Scholar
  31. 31.
    Vervoort L, Van Der Plancken I, Grauwet T, Verlinde P, Matser A, Hendrickx M et al. Thermal versus high pressure processing of carrots: a comparative pilot-scale study on equivalent basis. Innov Food Sci Emerg Technol (Internet). 2012;15:1. Available from:  https://doi.org/10.1016/j.ifset.2012.02.009 Google Scholar
  32. 32.
    Lemmens L, Tchuenche ES, van Loey AM, Hendrickx ME (2013) Beta-carotene isomerisation in mango puree as influenced by thermal processing and high-pressure homogenisation. Eur Food Res Technol 236(1):155Google Scholar
  33. 33.
    Meléndez-Martínez AJ, Vicario IM, Heredia FJ. Review (2007) Analysis of carotenoids in orange juice. J Food Compos Anal 20(7):638Google Scholar
  34. 34.
    Ordóñez-Santos LE, Martínez-Girón J, Arias-Jaramillo ME (2017) Effect of ultrasound treatment on visual color, vitamin C, total phenols, and carotenoids content in Cape gooseberry juice. Food Chem 233:96Google Scholar
  35. 35.
    Trumbo P, Yates AA, Schlicker S, Poos M (2001) Dietary reference intakes. J Am Diet Assoc 101(3):294.  https://doi.org/10.1016/S0002-8223(01)00078-5 Google Scholar
  36. 36.
    Christiaens S, Uwibambe D, Uyttebroek M, Van Droogenbroeck B, Van Loey AM, Hendrickx ME. Pectin characterisation in vegetable waste streams: a starting point for waste valorisation in the food industry. LWT Food Sci Technol (Internet). 2015 61(2):275.  https://doi.org/10.1016/j.lwt.2014.12.054 Google Scholar
  37. 37.
    Lopez-Sanchez P, Nijsse J, Blonk HCG, Bialek L, Schumm S, Langton M (2011) Effect of mechanical and thermal treatments on the microstructure and rheological properties of carrot, broccoli and tomato dispersions. J Sci Food Agric 91(2):207Google Scholar
  38. 38.
    Christiaens S, Van Buggenhout S, Chaula D, Moelants K, David CC, Hofkens J et al. In situ pectin engineering as a tool to tailor the consistency and syneresis of carrot purée. Food Chem (Internet). 2012;133(1):146. Available from:  https://doi.org/10.1016/j.foodchem.2012.01.009 Google Scholar
  39. 39.
    Lopez-Hernandez J, Oruna-Concha MJ, Simal-Lozano J, Vazquez-Blanco ME, Gonzalez-Castro MJ (1996) Chemical composition of padron peppers (Capsicum annuum L.) grown in Galicia (N. W. Spain). Food Chem 51(4):557Google Scholar
  40. 40.
    Bernardo A, Martínez S, Álvarez M, Fernández A, López M. The composition of two Spanish pepper varieties (Fresno De La Vega and Benavente-Los Valles) in different ripening stages. J Food Qual (Internet). 2008 Dec;31(6):701. Available from:  https://doi.org/10.1111/j.1745-4557.2008.00229.x Google Scholar
  41. 41.
    Cantú-Lozano D, Rao MA, Gasparetto CA (2000) 23(5):373 Rheological properties of noncohesive apple dispersion with helical and vane impellers: effect of concentration and particle size. J Food Process Eng (Internet).  https://doi.org/10.1111/j.1745-4530.2000.tb00521.x Google Scholar
  42. 42.
    Moelants KRN, Cardinaels R, Jolie RP, Verrijssen TAJ, Van Buggenhout S, Zumalacarregui LM et al (2013) Relation between particle properties and rheological characteristics of carrot-derived suspensions. Food Bioprocess Technol 6(5):1127Google Scholar
  43. 43.
    Ahmed J, Shivhare U, Raghavan GS (2000) Rheological characteristics and kinetics of colour degradation of green chilli puree. J Food Eng 44(4):239.  https://doi.org/10.1016/S0260-8774(00)00034-0 Google Scholar
  44. 44.
    Hernández-Carrión M, Hernando I, Quiles A. High hydrostatic pressure treatment as an alternative to pasteurization to maintain bioactive compound content and texture in red sweet pepper. Innov Food Sci Emerg Technol (Internet). 2014;26:76. Available from:  https://doi.org/10.1016/j.ifset.2014.06.004 Google Scholar
  45. 45.
    Moelants KRN, Jolie RP, Palmers SKJ, Cardinaels R, Christiaens S, Van Buggenhout S et al (2013) The effects of process-induced pectin changes on the viscosity of carrot and tomato sera. Food Bioprocess Technol 6(10):2870Google Scholar
  46. 46.
    Houben K, Jolie RP, Fraeye I, Van Loey AM, Hendrickx ME. Comparative study of the cell wall composition of broccoli, carrot, and tomato: structural characterization of the extractable pectins and hemicelluloses. Carbohydr Res (Internet). 2011 Jul;346(9):1105.  https://doi.org/10.1016/j.carres.2011.04.014 Google Scholar
  47. 47.
    Sila DN, Duvetter T, De Roeck A, Verlent I, Smout C, Moates GK et al (2008) Texture changes of processed fruits and vegetables: potential use of high-pressure processing. Trends Food Sci Technol 19(6):309Google Scholar
  48. 48.
    Koubala BB, Christiaens S, Kansci G, Van Loey AM, Hendrickx ME. Isolation and structural characterisation of papaya peel pectin. Food Res Int (Internet). Elsevier Ltd; 2014;55:215. Available from:  https://doi.org/10.1016/j.foodres.2013.11.009 Google Scholar
  49. 49.
    Arancibia RA, Motsenbocker CE (2004) Pectin ultra-degradation decreases the force required to detach ripe fruit from the calyx in tabasco pepper. J Am Soc Hortic Sci 129(5):642Google Scholar
  50. 50.
    Arancibia RA, Motsenbocker CE (2006) Pectin methylesterase activity in vivo differs from activity in vitro and enhances polygalacturonase-mediated pectin degradation in tabasco pepper. J Plant Physiol 163(5):488Google Scholar
  51. 51.
    Duvetter T, Sila DN, Van Buggenhout S, Jolie R, Van Loey A, Hendrickx M. Pectins in processed fruit and vegetables: part i-stability and catalytic activity of pectinases. Compr Rev Food Sci Food Saf (Internet). 2009;8(2):75. Available from:  https://doi.org/10.1111/j.1541-4337.2009.00070.x Google Scholar
  52. 52.
    Sila DN, Van Buggenhout S, Duvetter T, Fraeye I, De Roeck A, Van Loey A et al (2009) Pectins in processed fruits and vegetables: part II—structure-function relationships. Compr Rev Food Sci Food Saf 8(2):86Google Scholar
  53. 53.
    Duman AD. Storage of red chili pepper under hermetically sealed or vacuum conditions for preservation of its quality and prevention of mycotoxin occurrence. J Stored Prod Res (Internet). Elsevier Ltd; 2010;46(3):155. Available from:  https://doi.org/10.1016/j.jspr.2010.02.002 Google Scholar
  54. 54.
    Pugliese A, Loizzo MR, Tundis R, O’Callaghan Y, Galvin K, Menichini F et al. The effect of domestic processing on the content and bioaccessibility of carotenoids from chili peppers (Capsicum species). Food Chem (Internet). Elsevier Ltd; 2013 Dec;141(3):2606. Available from:  https://doi.org/10.1016/j.foodchem.2013.05.046 Google Scholar
  55. 55.
    Maiani G, Periago Castón MJ, Catasta G, Toti E, Cambrodón IG, Bysted A et al (2009 Sep;53(S2):S194) Carotenoids: actual knowledge on food sources, intakes, stability and bioavailability and their protective role in humans. Mol Nutr Food Res (Internet). Available from:  https://doi.org/10.1002/mnfr.200800053 Google Scholar
  56. 56.
    García-Parra J, González-Cebrino F, Delgado-Adámez J, Cava R, Martín-Belloso O, Elez-Martínez P et al. Application of innovative technologies, moderate-intensity pulsed electric fields and high-pressure thermal treatment, to preserve and/or improve the bioactive compounds content of pumpkin. Innov Food Sci Emerg Technol (Internet). Elsevier; 2018 Feb;45(September 2017):53. Available from:  https://doi.org/10.1016/j.ifset.2017.09.022 Google Scholar
  57. 57.
    Islam SN, Nusrat T, Begum P, Ahsan M. Carotenoids and β-carotene in orange fleshed sweet potato: a possible solution to vitamin A deficiency. Food Chem (Internet). Elsevier Ltd; 2016 May;199:628. Available from:  https://doi.org/10.1016/j.foodchem.2015.12.057 Google Scholar
  58. 58.
    Jing G, Li T, Qu H, Yun Z, Jia Y, Zheng X et al Carotenoids and volatile profiles of yellow- and red-fleshed papaya fruit in relation to the expression of carotenoid cleavage dioxygenase genes. Postharvest Biol Technol (Internet). Elsevier B.V.; 2015 Nov;109:114. Available from:  https://doi.org/10.1016/j.postharvbio.2015.06.006 Google Scholar
  59. 59.
    Rodriguez-Amaya D (2001) A guide to carotenoid analysis in foods. Life sciences. ILSI Press, Washington, 64 pGoogle Scholar
  60. 60.
    Lim TK. Capsicum annuum. In: Edible medicinal and non-medicinal plants (Internet). Dordrecht: Springer ; 2013. p 161. Available from:  https://doi.org/10.1007/978-94-007-4053-2 Google Scholar
  61. 61.
    Nisar N, Li L, Lu S, Khin NC, Pogson BJ (2015) Carotenoid metabolism in plants. Mol Plant 8(1):68Google Scholar
  62. 62.
    Lefebvre V, Kuntz M, Camara B, Palloix A. The capsanthin–capsorubin synthase gene: a candidate gene for the y locus controlling the red fruit colour in pepper. Plant Mol Biol (Internet). 1998;36(5):785. Available from:  https://doi.org/10.1023/A:1005966313415 Google Scholar
  63. 63.
    Matsufuji H, Nakamura H, Chino M, Takeda M (1998 Sep;46(9):3468) Antioxidant activity of capsanthin and the fatty acid esters in paprika (Capsicum annuum). J Agric Food Chem (Internet). Available from:  https://doi.org/10.1021/jf980200i Google Scholar
  64. 64.
    Kim JS, Ha TY, Kim S, Lee SJ, Ahn J. Red paprika (Capsicum annuum L.) and its main carotenoid capsanthin ameliorate impaired lipid metabolism in the liver and adipose tissue of high-fat diet-induced obese mice. J Funct Foods (Internet). Elsevier Ltd; 2017;31:131. Available from:  https://doi.org/10.1016/j.jff.2017.01.044 Google Scholar
  65. 65.
    Biehler E, Alkerwi A, Hoffmann L, Krause E, Guillaume M, Lair ML et al (2012) Contribution of violaxanthin, neoxanthin, phytoene and phytofluene to total carotenoid intake: assessment in Luxembourg. J Food Compos Anal 25(1):56Google Scholar
  66. 66.
    Mokhtar M, Russo M, Cacciola F, Donato P, Giuffrida D, Riazi A et al (2016) Capsaicinoids and carotenoids in Capsicum annuum L.: optimization of the extraction method, analytical characterization, and evaluation of its biological properties. Food Anal Methods 9(5):1381Google Scholar
  67. 67.
    Bernstein PS, Li B, Vachali PP, Gorusupudi A, Shyam R, Henriksen BS et al. Lutein, zeaxanthin, and meso-zeaxanthin: the basic and clinical science underlying carotenoid-based nutritional interventions against ocular disease. Prog Retin Eye Res (Internet). Elsevier Ltd; 2016 Jan;50:34. Available from:  https://doi.org/10.1016/j.preteyeres.2015.10.003 Google Scholar
  68. 68.
    Van Buggenhout S, Ahrné L, Alminger M, Andrys A, Benjamin M, Bialek L et al (2012) Structural design of natural plant-based foods to promote nutritional quality. Trends Food Sci Technol 24(1):47Google Scholar
  69. 69.
    Nwachukwu ID, Udenigwe CC, Aluko RE. Lutein and zeaxanthin: production technology, bioavailability, mechanisms of action, visual function, and health claim status. Trends Food Sci Technol (Internet). Elsevier Ltd; 2016;49:74. Available from:  https://doi.org/10.1016/j.tifs.2015.12.005 Google Scholar
  70. 70.
    Rodriguez-Uribe L, Guzman I, Rajapakse W, Richins RD, O’Connell MA (2012) Carotenoid accumulation in orange-pigmented Capsicum annuum fruit, regulated at multiple levels. J Exp Bot 63(1):517Google Scholar
  71. 71.
    Molnár P, Kawase M, Satoh K, Sohara Y, Tanaka T, Tani S et al Biological activity of carotenoids in red paprika, valencia orange and golden delicious apple. Phyther Res (Internet). 2005 Aug;19(8):700. Available from:  https://doi.org/10.1002/ptr.1735 Google Scholar
  72. 72.
    Zewdie Y, Bosland PW (2001) Capsaicinoid profiles are not good chemotaxonomic indicators for Capsicum species. Biochem Syst Ecol 29(2):161Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Food Technology, Leuven Food Science and Nutrition Research Center (LFoRCe), Department of Microbial and Molecular Systems (M2S)KU LeuvenHeverleeBelgium
  2. 2.Faculty of Food IndustriesUniversidad Nacional Agraria La MolinaLa MolinaPeru
  3. 3.Vegetable Crops Research Program, Faculty of AgronomyUniversidad Nacional Agraria La MolinaLa MolinaPeru

Personalised recommendations