Advertisement

European Food Research and Technology

, Volume 245, Issue 2, pp 343–353 | Cite as

Influence of quinoa and zein content on the structural, rheological, and textural properties of gluten-free pasta

  • Meli Sosa
  • Alicia Califano
  • Gabriel LorenzoEmail author
Original Paper
  • 87 Downloads

Abstract

This work analyzed the effect of quinoa flour and zein protein on the rheological, structural, and physicochemical characteristics of gluten-free pasta throughout the production process. Supplementing corn flour with quinoa increased dough protein content and greatly decreased the elastic behavior of the dough. Water diffusivity in the dough matrix during the drying process decreased in the presence of quinoa and was related to the smooth homogeneous surface of the dough. Cooking quality of the final product was explained in terms of the rheological and microstructural characteristics using mathematical models that related dough composition with structural parameters. The presence of zein seemed to weaken the protein network; microstructure was more crumbly with starch granules not completely embedded in the carbohydrate–protein matrix. These structural features explained the lower cooking time, higher breakability, and low cohesiveness of cooked zein-containing pasta. The addition of zein negatively altered the structure of pasta, whereas quinoa flour resulted in a cooked product with good textural properties and higher protein content.

Keywords

Quinoa Zein Rheology Drying process Microstructure 

Notes

Acknowledgements

The authors are grateful to Ovobrand S.A., Argentina, who provided the dried egg and the dry egg-white for this study. The financial support of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, PIP0546), Agencia Nacional de Promoción Científica y Tecnológica (PICT 2015-0344) and Universidad Nacional de La Plata (X728) are also acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethical requirements

The present article does not contain any studies with human or animal subject.

References

  1. 1.
    Wieser H, Koehler P, Konitzer K (2014) Celiac disease and gluten: multidisciplinary challenges and opportunities. Elsevier, San DiegoGoogle Scholar
  2. 2.
    Volta U, Caio G, Tovoli F, De Giorgio R (2013) Non-celiac gluten sensitivity: questions still to be answered despite increasing awareness. Cell Mol Immunol 10(5):383–392CrossRefGoogle Scholar
  3. 3.
    Rubio-Tapia A, Murray JA (2010) Celiac disease. Curr Opin Gastroenterol 26(2):116CrossRefGoogle Scholar
  4. 4.
    Capriles VD, dos Santos FG, Arêas JAG (2016) Gluten-free breadmaking: improving nutritional and bioactive compounds. J Cereal Sci 67:83–91CrossRefGoogle Scholar
  5. 5.
    Larrosa V, Lorenzo G, Zaritzky N, Califano A (2013) Optimization of rheological properties of gluten-free pasta dough using mixture design. J Cereal Sci 57(3):520–526CrossRefGoogle Scholar
  6. 6.
    Padalino L, Conte A, Del Nobile MA (2016) Overview on the general approaches to improve gluten-free pasta and bread. Foods 5(4):87CrossRefGoogle Scholar
  7. 7.
    Fiorda FA, Soares MS, da Silva FA, Grosmann MVE, Souto LRF (2013) Microestructure, texture and colour of gluten-free pasta made with amaranth flour, cassava starch and cassava bagasse. LWT Food Sci Technol 54(1):132–138CrossRefGoogle Scholar
  8. 8.
    Foschia M, Beraldo P, Peressini D (2017) Evaluation of the physicochemical properties of gluten-free pasta enriched with resistant starch. J Sci Food Agric 97(2):572–577CrossRefGoogle Scholar
  9. 9.
    Marti A, Pagani MA (2013) What can play the role of gluten in gluten free pasta? Trends Food Sci Technol 31(1):63–71CrossRefGoogle Scholar
  10. 10.
    Sozer N (2009) Rheological properties of rice pasta dough supplemented with proteins and gums. Food Hydrocoll 23(3):849–855CrossRefGoogle Scholar
  11. 11.
    Mahmood K, Kamilah H, Shang PL, Sulaiman S, Ariffin F, Alias AK (2017) A review: Interaction of starch/non-starch hydrocolloid blending and the recent food applications. Food Biosci 19:110–120CrossRefGoogle Scholar
  12. 12.
    Sanguinetti AM, Secchi N, Del Caro A, Fadda C, Fenu PAM, Catzeddu P, Piga A (2015) Gluten-free fresh filled pasta: The effects of xanthan and guar gum on changes in quality parameters after pasteurisation and during storage. LWT Food Sci Technol 64(2):678–684CrossRefGoogle Scholar
  13. 13.
    Schoenlechner R, Drausinger J, Ottenschlaeger V, Jurackova K, Berghofer E (2010) Functional properties of gluten-free pasta produced from amaranth, quinoa and buckwheat. Plant Foods Hum Nutr 65(4):339–349CrossRefGoogle Scholar
  14. 14.
    Alvarez-Jubete L, Arendt EK, Gallagher E (2010) Nutritive value of pseudocereals and their increasing use as functional gluten-free ingredients. Trends Food Sci Technol 21(2):106–113CrossRefGoogle Scholar
  15. 15.
    Collar C (2016) Quinoa. In: Encyclopedia of Food and Health. Academic Press, Oxford, pp 573–579CrossRefGoogle Scholar
  16. 16.
    Gorinstein S, Pawelzik E, Delgado-Licon E, Haruenkit R, Weisz M, Trakhtenberg S (2002) Characterisation of pseudocereal and cereal proteins by protein and amino acid analyses. J Sci Food Agric 82(8):886–891CrossRefGoogle Scholar
  17. 17.
    Taylor JR, Parker ML (2002) Quinoa. In: Belton PS, Taylor JRN (eds) Pseudocereals and less common cereals. Springer, New York, pp 93–122CrossRefGoogle Scholar
  18. 18.
    Abugoch James LE (2009) Quinoa (Chenopodium quinoa Willd.): composition, chemistry, nutritional, and functional properties. Adv Food Nutr Res 58:1–31CrossRefGoogle Scholar
  19. 19.
    Hager A-S, Wolter A, Jacob F, Zannini E, Arendt EK (2012) Nutritional properties and ultra-structure of commercial gluten free flours from different botanical sources compared to wheat flours. J Cereal Sci 56(2):239–247CrossRefGoogle Scholar
  20. 20.
    Giménez MA, Drago SR, Bassett MN, Lobo MO, Sammán NC (2016) Nutritional improvement of corn pasta-like product with broad bean (Vicia faba) and quinoa (Chenopodium quinoa). Food Chem 199:150–156CrossRefGoogle Scholar
  21. 21.
    Oom A, Pettersson A, Taylor JRN, Stading M (2008) Rheological properties of kafirin and zein prolamins. J Cereal Sci 47(1):109–116CrossRefGoogle Scholar
  22. 22.
    Andersson H, Öhgren C, Johansson D, Kniola M, Stading M (2011) Extensional flow, viscoelasticity and baking performance of gluten-free zein-starch doughs supplemented with hydrocolloids. Food Hydrocoll 25(6):1587–1595CrossRefGoogle Scholar
  23. 23.
    Larrosa V, Lorenzo G, Zaritzky N, Califano A (2015) Dynamic rheological analysis of gluten-free pasta as affected by composition and cooking time. J Food Eng 160:11–18CrossRefGoogle Scholar
  24. 24.
    Larrosa V, Lorenzo G, Zaritzky N, Califano A (2016) Improvement of the texture and quality of cooked gluten-free pasta. LWT Food Sci Technol 70:96–103CrossRefGoogle Scholar
  25. 25.
    AACC (2000) Approved methods of the AACC, 10th edn. American Association of Cereal Chemists, St. PaulGoogle Scholar
  26. 26.
    Palavecino PM, Bustos MC, Heinzmann Alabí MB, Nicolazzi MS, Penci MC, Ribotta PD (2017) Effect of ingredients on the quality of gluten-free sorghum pasta. J Food Sci 82(9):2085–2093CrossRefGoogle Scholar
  27. 27.
    Hyun K, Kim SH, Ahn KH, Lee SJ (2002) Large amplitude oscillatory shear as a way to classify the complex fluids. J Nonnewton Fluid Mech 107(1):51–65CrossRefGoogle Scholar
  28. 28.
    Panchapakesan C, Sozer N, Dogan H, Huang Q, Kokini JL (2012) Effect of different fractions of zein on the mechanical and phase properties of zein films at nano-scale. J Cereal Sci 55(2):174–182CrossRefGoogle Scholar
  29. 29.
    Marco C, Rosell CM (2008) Breadmaking performance of protein enriched, gluten-free breads. Eur Food Res Technol 227(4):1205–1213CrossRefGoogle Scholar
  30. 30.
    Lorenzo G, Zaritzky NE, Califano AN (2008) Optimization of non-fermented gluten-free dough composition based on rheological behavior for industrial production of “empanadas” and pie-crusts. J Cereal Sci 48(1):224–231CrossRefGoogle Scholar
  31. 31.
    Kill R, Turnbull K (2001) Pasta and semolina technology. Wiley, OxfordGoogle Scholar
  32. 32.
    Larrosa V, Lorenzo G, Zaritzky N, Califano A (2016) Modelado matemático del secado de pastas libres de gluten en relación a la temperatura y humedad relativa del aire. INNOTEC 11:54–58Google Scholar
  33. 33.
    Geankoplis CJ (2003) Transport processes and separation process principles, 4th edn. Prentice Hall PTR, New JerseyGoogle Scholar
  34. 34.
    Mercier S, Moresoli C, Villeneuve S, Mondor M, Marcos B (2013) Sensitivity analysis of parameters affecting the drying behaviour of durum wheat pasta. J Food Eng 118(1):108–116CrossRefGoogle Scholar
  35. 35.
    Abugoch LE, Tapia C, Villamán MC, Yazdani-Pedram M, Díaz-Dosque M (2011) Characterization of quinoa protein–chitosan blend edible films. Food Hydrocoll 25(5):879–886CrossRefGoogle Scholar
  36. 36.
    Abugoch LE, Romero N, Tapia CA, Silva J, Rivera M (2008) Study of some physicochemical and functional properties of quinoa (Chenopodium quinoa Willd) protein isolates. J Agric Food Chem 56(12):4745–4750CrossRefGoogle Scholar
  37. 37.
    Gorinstein S, Drzewiecki J, Delgado-Licon E, Pawelzik E, Ayala ALM, Medina OJ, Haruenkit R, Trakhtenberg S (2005) Relationship between dicotyledone-amaranth, quinoa, fagopyrum, soybean and monocots-sorghum and rice based on protein analyses and their use as substitution of each other. Eur Food Res Technol 221(1–2):69–77CrossRefGoogle Scholar
  38. 38.
    Marti A, D’Egidio MG, Pagani MA (2016) Pasta: quality testing methods. In: Encyclopedia of food grains, Second edn. Academic Press, Oxford, pp 161–165CrossRefGoogle Scholar
  39. 39.
    Rayas-Duarte P, Mock C, Satterlee L (1996) Quality of spaghetti containing buckwheat, amaranth, and lupin flours. Cereal Chem 73(3):381–387Google Scholar
  40. 40.
    Yalcin S, Basman A (2008) Effects of gelatinisation level, gum and transglutaminase on the quality characteristics of rice noodle. Int J Food Sci Tech 43(9):1637–1644CrossRefGoogle Scholar
  41. 41.
    Fu BX (2008) Asian noodles: History, classification, raw materials, and processing. Food Res Int 41(9):888–902CrossRefGoogle Scholar
  42. 42.
    Gallegos-Infante J, Rocha-Guzman N, Gonzalez-Laredo R, Ochoa-Martínez L, Corzo N, Bello-Perez L, Medina-Torres L, Peralta-Alvarez L (2010) Quality of spaghetti pasta containing Mexican common bean flour (Phaseolus vulgaris L.). Food Chem 119(4):1544–1549CrossRefGoogle Scholar
  43. 43.
    Mastromatteo M, Chillo S, Iannetti M, Civica V, Del Nobile MA (2011) Formulation optimisation of gluten-free functional spaghetti based on quinoa, maize and soy flours. Int J Food Sci Tech 46(6):1201–1208CrossRefGoogle Scholar
  44. 44.
    Anjum FM, Khan MR, Din A, Saeed M, Pasha I, Arshad MU (2007) Wheat gluten: high molecular weight glutenin subunits—structure, genetics, and relation to dough elasticity. J Food Sci 72(3):56–63CrossRefGoogle Scholar
  45. 45.
    Karam LB, Grossmann MVE, Silva RSS, Ferrero C, Zaritzky NE (2005) Gel textural characteristics of corn, cassava and yam starch blends: a mixture surface response methodology approach. Starch-Stärke 57(2):62–70CrossRefGoogle Scholar
  46. 46.
    Fiszman S, Damasio M (2000) Instrumental measurement of adhesiveness in solid and semi-solid foods. A survey. J Texture Stud 31(1):69–91CrossRefGoogle Scholar
  47. 47.
    Stikic R, Glamoclija D, Demin M, Vucelic-Radovic B, Jovanovic Z, Milojkovic-Opsenica D, Jacobsen S-E, Milovanovic M (2012) Agronomical and nutritional evaluation of quinoa seeds (Chenopodium quinoa Willd.) as an ingredient in bread formulations. J Cereal Sci 55(2):132–138CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), CICPBA, CONICET, Facultad de Ciencias ExactasUniversidad Nacional de La Plata (UNLP)La PlataArgentina
  2. 2.Departamento Ingeniería Química, Facultad de IngenieríaUNLPLa PlataArgentina

Personalised recommendations