European Food Research and Technology

, Volume 245, Issue 1, pp 51–59 | Cite as

Melatonin and related bioactive compounds in commercialized date palm fruits (Phoenix dactylifera L.): correlation with some antioxidant parameters

  • Antía Verde
  • Jesús M. Míguez
  • Mercedes Gallardo
Original Paper


The presence of melatonin in plant foodstuffs is a matter of growing interest since its antioxidant properties and the possible benefits for health of consumers. Fruits of date palm (Phoenix dactylifera, L.) are highly appreciated because of their nutritional value and healthy properties related to high content in antioxidant compounds present in them. In this study, we show that dates’ antioxidant properties persist in several commercialized varieties typical of the European markets, as compared to values referenced from studies in date fruit varieties collected in the origin countries. We also show for the first time that melatonin and one of its isomers are present in dates, being that the isomer content is several times higher than melatonin (in the range of 1 µg per 100 g of fresh weight). The isomer content was highly correlated with total phenolic compounds and total antioxidant capacity in the date varieties. Additionally, high levels of the indoleamines, serotonin and auxin accumulate in dates, which could be related to fruit ripening. All the indole derivatives analyzed in dates exhibited antioxidant activity as assayed by DPPH, with differences among the compounds and concentrations used. These results support that melatonin, its isomer, and related indoles present in dates could contribute to the reported health benefits of this fruit by increasing its natural antioxidant potential.


Date palm fruit Antioxidant capacity Phenolic and flavonoid content Melatonin Melatonin isomer Indoleamines 



The authors thank Sihem Latrach for technical support and assistance in date fruits collection. A. Verde is a fellowship recipient from Xunta de Galicia into the pre-doctoral formation program (Reference ED481A-2017/387).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.


  1. 1.
    Odeh I, Al-Rimawi F, Abbadi J, Obeyat L, Qabbajeh M, Hroub A (2014) Effect of harvesting date and variety of date palm on antioxidant capacity phenolic and flavonoid content of date palm (Phoenix Dactylifera). J Food Nutr Res 2(8):499–505CrossRefGoogle Scholar
  2. 2.
    Amorós A, Pretel MT, Almansa MS, Botella MA, Zapata PJ, Serrano M (2009) Antioxidant and nutritional properties of date fruit from Elche grove as affected by maturation and phenotypic variability of date palm. Food Sci Technol Int 15(1):65–72CrossRefGoogle Scholar
  3. 3.
    Al-Turki S, Shahba MA, Stushnoff C (2010) Diversity of antioxidant properties and phenolic content of date palm (Phoenix dactylifera L) fruits as affected by cultivar and location. J Food Agric Environ 8(1):253–260Google Scholar
  4. 4.
    Mohamed R, Fageer AS, Eltayeb MM, Mohamed Ahmed IA (2014) Chemical composition antioxidant capacity and mineral extractability of Sudanese date palm (Phoenix dactylifera L) fruits. Food Sci Nutr 2(5):478–489CrossRefGoogle Scholar
  5. 5.
    Carrillo-Vico A, Lardone PJ, Álvarez-Sánchez N, Rodríguez-Rodríguez A, Guerrero JM (2013) Melatonin: buffering the immune system. Int J Mol Sci 14(4):8638–8683CrossRefGoogle Scholar
  6. 6.
    Reiter RJ, Tan DX, Rosales-Corral S, Manchester LC (2013) The universal nature unequal distribution and antioxidant functions of melatonin and its derivatives. Mini Rev Med Chem 13(3):373–384Google Scholar
  7. 7.
    Tan DX, Hardeland R, Manchester LC, Korkmaz A, Ma S, Rosales-Corral S, Reiter RJ (2012) Functional roles of melatonin in plants and perspectives in nutritional and agricultural science. J Exp Bot 63(2):577–597CrossRefGoogle Scholar
  8. 8.
    Nawaz MA, Huang Y, Bie Z, Ahmed W, Reiter RJ, Niu M, Hameed S (2016) Melatonin: current status and future perspectives in plant science. Front Plant Sci 6:1230CrossRefGoogle Scholar
  9. 9.
    Arnao MB, Hernández-Ruiz J (2015) Functions of melatonin in plants: a review. J Pineal Res 59(2):133–150CrossRefGoogle Scholar
  10. 10.
    Hardeland R (2016) Melatonin in plants–diversity of levels and multiplicity of functions. Front Plant Sci 7:198CrossRefGoogle Scholar
  11. 11.
    Tan DX, Zheng X, Kong J, Manchester LC, Hardeland R, Kim SJ (2014) Fundamental issues related to the origin of melatonin and melatonin isomers during evolution: relation to their biological functions. Int J Mol Sci 15(9):15858–15890CrossRefGoogle Scholar
  12. 12.
    Sae-Teaw M, Jonhs J, Johns NP, Subongkot S (2013) Serum melatonin levels and antioxidant capacities after consumption of pineapple, orange or banana by healthy male volunteers. J Pineal Res 55(1):58–64CrossRefGoogle Scholar
  13. 13.
    Rodríguez-Naranjo MI, Gil-Izquierdo A, Troncoso AM, Cantos E, García-Parrilla MC (2011) Melatonin: a new bioactive compound in wine. J Food Compos Anal 24(4–5):603–608CrossRefGoogle Scholar
  14. 14.
    Kocadağlı T, Yılmaz C, Gökmen V (2014) Determination of melatonin and its isomer in foods by liquid chromatography tandem mass spectrometry. Food Chem 153:151–156CrossRefGoogle Scholar
  15. 15.
    Muñoz JLP, Ceinos RM, Soengas JL, Míguez JM (2009) A simple and sensitive method for determination of melatonin in plasma bile and intestinal tissues by high performance liquid chromatography with fluorescence detection. J Chromatogr B 877(22):2173–2177CrossRefGoogle Scholar
  16. 16.
    Gesto M, Lopez-Patiño MA, Hernandez J, Soengas JL, Míguez JM (2013) The response of brain serotonergic and dopaminergic systems to an acute stressor in rainbow trout: a time course study. J Exp Biol 216:4435–4442CrossRefGoogle Scholar
  17. 17.
    Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol 299:152–178CrossRefGoogle Scholar
  18. 18.
    Kim DO, Jeong SW, Lee CY (2003) Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem 81(3):321–326CrossRefGoogle Scholar
  19. 19.
    Brand-Williams W, Cuvelier ME, Berset C (1995) Use of free radical method to evaluate antioxidant activity. Lebensm Wiss Technol 28(1):25–30CrossRefGoogle Scholar
  20. 20.
    Benmeddour Z, Mehinagic E, Le Meurlay D, Louaileche H (2013) Phenolic composition and antioxidant capacities of ten Algerian date (Phoenix dactylifera L) cultivars: a comparative study. J Funct Foods 5(1):346–354CrossRefGoogle Scholar
  21. 21.
    Ismail B, Haffar I, Baalbaki R, Henry J (2008) Physico-chemical characteristics and sensory quality of two date varieties under commercial and industrial storage conditions. LWT Food Sci Technol 41(5):896–904CrossRefGoogle Scholar
  22. 22.
    Al-Jasass FM, Siddiq M, Sogi DS (2015) Antioxidant activity and color evaluation of date fruit of selected cultivars commercially available in the United States. Adv Chem. Google Scholar
  23. 23.
    Kchaou W, Abbés F, Attia H, Besbes S (2014) In vitro antioxidant activities of three-selected dates from Tunisia (Phoenix dactylifera L). J Chem. Google Scholar
  24. 24.
    Saleh EA, Tawfik M, Abu-Tarbouch HM (2011) Phenolic contents and antioxidants activity of various date palm (Phoenix dactylifora L) fruit from Saudi Arabia. Food Nutr Sci 2:1134–1141Google Scholar
  25. 25.
    Arnao MB (2014) Phytomelatonin: discovery, content and role in plants. Adv Bot 24:54–61Google Scholar
  26. 26.
    Tan DX, Hardeland R, Manchester LC, Rosales-Corral S, Coto-Montes A, Boga JA, Reiter RJ (2012) Emergence of naturally occurring melatonin isomers and their proposed nomenclature. J Pineal Res 53(2):113–121CrossRefGoogle Scholar
  27. 27.
    Ramakrishna A, Giridhar P, Ravishankar GA (2011) Phytoserotonin: a review. Plant Signal Behav 6(6):800–809CrossRefGoogle Scholar
  28. 28.
    Feldman JM, Lee EM (1985) Serotonin content of foods: effect on urinary excretion of 5-hydroxyindoleacetic acid. Am J Clin Nutr 42(4):639–643CrossRefGoogle Scholar
  29. 29.
    Rayne S (2010) Concentrations and profiles of melatonin and serotonin in fruits and vegetables during ripening: a mini-review. Nature. Google Scholar
  30. 30.
    Hano S, Shibuya T, Imoto N, Ito A, Imanishi S, Aso H, Kanayama Y (2017) Serotonin content in fresh and processed tomatoes and its accumulation during fruit development. Sci Hortic 214:107–113CrossRefGoogle Scholar
  31. 31.
    Rodríguez-Naranjo MI, Moyá ML, Cantos-Villar E, García-Parrilla MC (2012) Comparative evaluation of the antioxidant activity of melatonin and related indoles. J Food Comp Anal 28:16–22CrossRefGoogle Scholar
  32. 32.
    Kang K, Kim YS, Park S, Back K (2009) Senescence-induced serotonin biosynthesis and its role in delaying senescence in rice leaves. Plant Physiol 150(3):1380–1393CrossRefGoogle Scholar
  33. 33.
    FAO (2002) Date palm cultivation. Plant production and protection paper 156 Rev 1 (ISSN 0259-2517)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Antía Verde
    • 1
  • Jesús M. Míguez
    • 2
  • Mercedes Gallardo
    • 1
  1. 1.Departamento de Biología Vegetal y Ciencias del Suelo, Facultad de BiologíaUniversidad de VigoVigoSpain
  2. 2.Departamento de Biología Funcional y Ciencias de la Salud, Facultad de BiologíaUniversidad de VigoVigoSpain

Personalised recommendations