Skip to main content
Log in

Determination of the phenolic profile of peach (Prunus persica L.) kernels using UHPLC–LTQ OrbiTrap MS/MS technique

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Recently, search for new natural sources of compounds with health-enhancing properties prompted interest in fruit kernels. This paper aims to assess peach kernels as a source of nutritionally important compounds, such as phenolic compounds. A total of 25 kernels from various peach germplasm differing in origin and ripening time were characterized by their phenolic profiles. Ultra-high-Performance Liquid Chromatography coupled with Linear Trap Quadrupole and OrbiTrap MS/MS hybrid mass spectrometry was used for determination of 76 different organic compounds. The content of identified phenolic compounds indicated peach kernel as reliable source of bioactive substances with prevalent concentrations of catechin and several phenolic acids. Statistical procedures confirm that phenolic compounds could be used as phytochemical biomarkers to differentiate peach kernel samples belonging to different cultivars/genotypes according to their origin and ripening time. The CATPCA confirmed the possibility of application of chemical profiles presented only as categorical variables for classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bassi D, Monet R (2008) In: Layne D, Bassi D (eds) The peach: botany, production and uses. CABI, London, pp 1–36

    Google Scholar 

  2. FAOStat (2014) http://www.fao.org/faostat/en/#data/QC. Accessed Oct 2017

  3. Vásquez-Villanueva R, Marina ML, García MC (2015) Revalorization of a peach (Prunus persica (L.) Batsch) byproduct: extraction and characterization of ACE-inhibitory peptides from peach stones. J Funct Foods 18:137–146

    Article  Google Scholar 

  4. Stanojević M, Trifković J, Fotirić Akšić M, Rakonjac V, Nikolić D, Šegan S, Milojković-Opsenica D (2015) Sugar profile of kernels as a marker of origin and ripening time of peach (Prunus persicae L.). Plant Food Hum Nutr 70:433–440

    Article  Google Scholar 

  5. Wu H, Shi J, Xue SJ, Kakuda Y, Wang D, Jiang YM, Ye XQ, Li Y, Jayasankar S (2011) Essential oil extracted from peach (Prunus persica) kernel and its physicochemical and antioxidant properties. LWT Food Sci Technol 44:2032–2039

    Article  CAS  Google Scholar 

  6. Liu H, Cao J, Jiang W (2015) Evaluation and comparison of vitamin C, phenolic compounds, antioxidant properties and metal chelating activity of pulp and peel from selected peach cultivars. LWT Food Sci Technol 63:1042–1048

    Article  CAS  Google Scholar 

  7. Bolarinwa IF, Orfila C, Morgan MRA (2014) Amygdalin content of seeds, kernels and food products commercially-available in the UK. Food Chem 152:133–139

    Article  CAS  Google Scholar 

  8. Campbell OE, Padilla-Zakour OI (2013) Phenolic and carotenoid composition of canned peaches (Prunuspersica) and apricots (Prunusarmeniaca) as affected by variety and peeling. Food Res Int 54:448–455

    Article  CAS  Google Scholar 

  9. Frolov A, Henning A, Böttcher C, Tissier A, StrackD (2013) An UPLC–MS/MS Method for the simultaneous identification and quantitation of cell wall phenolics in Brassica napus seeds. J Agric Food Chem 61:1219–1227

    Article  CAS  Google Scholar 

  10. Ignat I, Volf I, Popa VI (2011) A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem 126:1821–1835

    Article  CAS  Google Scholar 

  11. Guiné RP, Barroca MJ, Gonçalves FJ, Alves M, Oliveira S, Mendes M (2015) Artificial neural network modelling of the antioxidant activity and phenolic compounds of bananas submitted to different drying treatments. Food Chem 168:454–459

    Article  Google Scholar 

  12. Montevecchi G, Vasile Simone G, Mellano MG, Masino F, Antonelli A (2013) Fruit sensory characterization of four Pescabivona, white-fleshed peach [Prunus persica (L.) Batsch], landraces and correlation with physical and chemical parameters. Fruits 68:195–207

    Article  CAS  Google Scholar 

  13. Tomás-Barberán FA, Gil MI, Cremin P, Waterhouse AL, Hess-Pierce B, Kader AA (2001) HPLC–DAD–ESIMS analysis of phenolic compounds in nectarines, peaches, and plums. J Agric Food Chem 49:4748–4760

    Article  Google Scholar 

  14. Zupan A, Mikulic-Petkovsek M, Cunja V, Stampar F, Veberic R (2013) Comparison of phenolic composition of healthy apple tissues and tissues affected by bitter pit. J Agric Food Chem 61:12066–12071

    Article  CAS  Google Scholar 

  15. Aaby K, Ekeberg D, Skrede G (2007) Characterization of phenolic compounds in strawberry (Fragaria x ananassa) fruits by different HPLC detectors and contribution of individual compounds to total antioxidant capacity. J Agric Food Chem 55:4395–4406

    Article  CAS  Google Scholar 

  16. Vallverdú-Queralt A, Regueiro J, Martínez-Huélamo M, de Alvarengam JF, Leal LN, Lamuela-Raventós RM (2014) A comprehensive study on the phenolic profile of widely used culinary herbs and spices: rosemary, thyme, oregano, cinnamon, cumin and bay. Food Chem 154:299–307

    Article  Google Scholar 

  17. Noratto G, Martino HSD, Simbo S, Byrne D, Mertens-Talcott SU (2015) Consumption of polyphenol-rich peach and plum juice prevents risk factors for obesity-related metabolic disorders and cardiovascular disease in Zucker rats. J Nutr Biochem 26:633–641

    Article  CAS  Google Scholar 

  18. Lucci P, Saurina J, Núñez O (2017) Trends in LC–MS and LC–HRMS analysis and characterization of polyphenols in food. Trends Anal Chem 88:1–24

    Article  CAS  Google Scholar 

  19. Liu H, Cao J, Jiang W (2015) Changes in phenolics and antioxidant property of peach fruit during ripening and responses to 1-methylcyclopropene. Postharvest Biol Technol 108:111–118

    Article  CAS  Google Scholar 

  20. Hurtado-Fernández E, Gómez-Romero M, Carrasco-Pancorbo A, Fernández-Gutiérrez A (2010) Application and potential of capillary electroseparation methods to determine antioxidant phenolic compounds from plant food material. J Pharm Biomed 53:1130–1160

    Article  Google Scholar 

  21. Naczk M, Shahidi F (2006) Phenolics in cereals, fruits and vegetables: occurrence, extraction and analysis. J Pharm Biomed 41:1523–1542

    Article  CAS  Google Scholar 

  22. Falcão SI, Vilas-Boas M, Estevinho LM, Barros C, Domingues MRM, Cardoso SM (2010) Phenolic characterization of Northeast Portuguese propolis: usual and unusual compounds. Anal Bioanal Chem 396:887–897

    Article  Google Scholar 

  23. Kečkeš S, Gašić U, Ćirković Veličković T, Milojković-Opsenica D, Natić M, Tešić Ž (2013) The determination of phenolic profiles of Serbian unifloral honeys using ultra-high-performance liquid chromatography/high resolution accurate mass spectrometry. Food Chem 138:32–40

    Article  Google Scholar 

  24. Mudrić S, Gašić U, Dramićanin A, Ćirić I, Milojković-Opsenica D, Popović-Đorđević J, Momirović N, Tešić Ž (2017) The polyphenolics and carbohydrates as indicators of botanical and geographical origin of Serbian autochthonous clones of red spice paprika. Food Chem 217:705–715

    Article  Google Scholar 

  25. Lamuela-Raventós RM, Vallverdú-Queralt A, Jáuregui O, Martínez-Huélamo M, Quifer-Rada P (2014) In: Watson RR (ed) Polyphenols in plants: isolation, purification and extract preparation. Elsevier Inc, London, pp 261–283

    Chapter  Google Scholar 

  26. Bakić I, Rakonjac V, Čolić S, Fotirić Akšić M, Nikolić D, Radović A, Rahovića D (2017) Agro-morphological characterisation and evaluation of a Serbian vineyard peach [Prunus persica (L.) Batsch] germplasm collection. Sci Hortic 225:668–675

    Article  Google Scholar 

  27. Vujanić-Varga D, Ognjanov V (1992) Conservation of vineyard peach populations in Yugoslavia. FAO IBPGR Plant Genet Resour Newsl 90:28–30

    Google Scholar 

  28. Prodanov M, Garrido I, Vacas V, Lebrón-Aguilar R, Dueñas M, Gómez-Cordovés C, Bartolomé B (2008) Ultrafiltration as alternative purification procedure for the characterization of low and high molecular-mass phenolics from almond skins. Anal Chim Acta 609:241–251

    Article  CAS  Google Scholar 

  29. Vallverdú-Queralt A, de Alvarenga JF, Estruch R, Lamuela-Raventós RM (2013) Bioactive compounds present in the Mediterranean sofrito. Food Chem 141: 3365–3372

    Article  Google Scholar 

  30. Plazonić A, Bucar F, Maleš Ž, Mornar A, Nigović B, Kujundžić N (2009) Identification and quantification of favonoids and phenolic acids in Burr Parsley (Caucalis platycarposL.), using high-performance liquid chromatography with diode array detection and electrospray ionization mass spectrometry. Molecules 14:2466–2490

    Article  Google Scholar 

  31. Chen S-D, Lu C-J, Zhao R-Z (2015) Identification and quantitative characterization of PSORI-CM01, a Chinese medicine formula for psoriasis therapy, by liquid chromatography coupled with an LTQ Orbitrap mass spectrometer. Molecules 20:1594–1609

    Article  Google Scholar 

  32. Castro C, Mura F, Valenzuela G, Figueroa C, Salinas R, Zuñiga CM, Torres JL, Fuguet E, Delporte C (2014) Identification of phenolic compounds by HPLC–ESI–MS/MS and antioxidant activity from Chilean propolis. Food Res Int 64:873–879

    Article  CAS  Google Scholar 

  33. Gu D, Yang Y, Abdulla R, Aisa HA (2012) Characterization and identification of chemical compositions in the extract of Artemisia rupestris L. by liquid chromatography coupled to quadrupole time-of-flight tandem mass spectrometry. Rapid Commun Mass Spectrom 26:83–100

    Article  CAS  Google Scholar 

  34. Khallouki F, Haubner R, Erben G, Ulrich CM, Owen RW (2012) Phytochemical composition and antioxidant capacity of various botanical parts of the fruits of Prunus × domestica L. from the Lorraine region of Europe. Food Chem 133:697–706

    Article  CAS  Google Scholar 

  35. Ristivojević P, Trifković J, Gašić U, Andrić F, Nedić N, Tešić Ž, Milojković-Opsenica D (2015) Ultrahigh-performance liquid chromatography and mass spectrometry (UHPLC–LTQ/Orbitrap/MS/MS) study of phenolic profile of Serbian poplar type propolis. Phytochem Anal 26:127–136

    Article  Google Scholar 

  36. Zhao T, He J, Wang X, Ma B, Wang X, Zhang L, Li P, Liu N, Lu J, Zhang X (2014) Rapid detection and characterization of major phenolic compounds in Radix Actinidia chinensis Planch by ultra-performance liquid chromatography tandem mass spectrometry. J Pharm Biomed 98:311–320

    Article  CAS  Google Scholar 

  37. Álvarez-Fernández MA, Hornedo-Ortega R, Cerezo AB, Troncoso AM, García-Parrilla MC (2016) Determination of nonanthocyanin phenolic compounds using high-resolution mass spectrometry (UHPLC–Orbitrap–MS/MS) and impact of storage conditions in a beverage made from strawberry by fermentation. J Agric Food Chem 64:1367–1376

    Article  Google Scholar 

  38. Martins N, Barros L, Santos-Buelga C, Henriques M, Silva S, Ferreira ICFR (2015) Evaluation of bioactive properties and phenolic compounds in different extracts prepared from Salvia officinalis L. Food Chem 170:378–385

    Article  CAS  Google Scholar 

  39. Vallverdú-Queralt A, Jáuregui O, Medina-Remón A, Andrés-Lacueva C, Lamuela-Raventós RM (2010) Improved characterization of tomato polyphenols using liquid chromatography/electrospray ionization linear ion trap quadrupole Orbitrap mass spectrometry and liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 24:2986–2992

    Article  Google Scholar 

  40. Spínola V, Pinto J, Castilho PC (2015) Identification and quantification of phenolic compounds of selected fruits from Madeira Island by HPLC–DAD–ESI–MSn and screening for their antioxidant activity. Food Chem 173:14–30

    Article  Google Scholar 

  41. Barros L, Dueñas M, Ferreira ICFR, Carvalho AM, Santos-Buelga C (2011) Use of HPLC–DAD–ESI/MS to profile phenolic compounds in edible wild greens from Portugal. Food Chem 127:169–173

    Article  CAS  Google Scholar 

  42. Sanz M, Cadahía E, Esteruelas E, Muñoz ÁM, Fernández de Simón B, Hernández T, Estrella I (2010) Phenolic compounds in chestnut (Castanea sativa Mill.) heartwood. Effect of toasting at cooperage. J Agric Food Chem 58:9631–9640

    Article  CAS  Google Scholar 

  43. Rawat MSM, Prasad D, Joshi RK, Pant G (1999) Proanthocyanidins from Prunus armeniaca roots. Phytochemistry 50:321–324

    Article  CAS  Google Scholar 

  44. Vrhovsek U, Masuero D, Palmieri L, Mattivi F (2012) Identification and quantification of flavonol glycosides in cultivated blueberry cultivars. J Food Compos Anal 25:9–16

    Article  CAS  Google Scholar 

  45. Sandín-España P, Mateo-Miranda M, López-Goti C, De Cal A, Alonso-Prados JL (2016) Development of a rapid and direct method for the determination of organic acids in peach fruit using LC–ESI–MS. Food Chem 192:268–273

    Article  Google Scholar 

  46. Caretto S, Linsalata V, Colella G, Mita G, Lattanzio V (2015) Carbon Fluxes between primary metabolism and phenolic pathway in plant tissues under stress. Int J Mol Sci 16:26378–26394

    Article  CAS  Google Scholar 

  47. Pant BD, Pant P, Erban A, Huhman D, Kopka J, Scheible WR (2015) Identification of primary and secondary metabolites with phosphorus status-dependent abundance in Arabidopsis, and of the transcription factor PHR1 as a major regulator of metabolic changes during phosphorus limitation. Plant Cell Environ 38:172–187

    Article  CAS  Google Scholar 

  48. Nunes-Damaceno M, Muñoz-Ferreiro N, Romero-Rodríguez MA, Vázquez-Odériz ML (2013) A comparison of kiwi fruit from conventional, integrated and organic production systems. LWT Food Sci Technol 54:291–297

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Ministry of Education, Science and Technological Development of Serbia, Grant nos. 172017 and TR 31063. The authors wish to thank Mr. Gordan Zec for selection of peach cultivars/genotypes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dušanka M. Milojković-Opsenica.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest to this work.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 21 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koprivica, M.R., Trifković, J.Đ., Dramićanin, A.M. et al. Determination of the phenolic profile of peach (Prunus persica L.) kernels using UHPLC–LTQ OrbiTrap MS/MS technique. Eur Food Res Technol 244, 2051–2064 (2018). https://doi.org/10.1007/s00217-018-3116-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-018-3116-2

Keywords

Navigation