European Food Research and Technology

, Volume 244, Issue 6, pp 1091–1100 | Cite as

Seedless table grape residues as a source of polyphenols: comparison and optimization of non-conventional extraction techniques

  • Pasquale CrupiEmail author
  • Tiziana Dipalmo
  • Maria Lisa Clodoveo
  • Aline T. Toci
  • Antonio Coletta
Original Paper


Grape skins are one of the most important leftovers of grape juice production, and are also a good source of bioactive compounds, especially phenolic antioxidants and fiber, because they are not stressed as the winemaking process occurs. Their extracts may be used as functional components of enriched foods and beverage, both to color the products and to supplement with bio-functional metabolites. Therefore, in this work, ultrasound assisted extraction (UAE) and microwave assisted extraction (MAE) were optimized and compared using response surface methodology (RSM) and desirability function (D) statistical tools, at selected temperature and solvent type (close to 50 °C and water/ethanol/phosphoric acid 70:30:1) but varying contact time (t) and sample-to-solvent ratio (S/L), to find the best conditions for the extraction of the main polyphenols present in table grape skin (Apulia Rose cv.) residues from juice processing. The mathematical models built in this investigation showed that the highest significant factor (P < 0.001) was t, influencing the extraction of all compounds irrespective of the technique used, with the optimal results obtained at intermediate levels (10.5 and 21 min for MAE and UAE, respectively). On the contrary, the only S/L factor was not always significant, even though higher amount of polyphenols were generally recovered at low solid/liquid ratio (0.05 and 0.07 g/mL for MAE and UAE, respectively). Finally, UAE extracts exhibited higher content of anthocyanins, procyanidins, flavonols, and stilbenes than MAE, with values ranging from 1.5 to 69.6 mg/100 g of fresh weight.


Seedless grape residues Polyphenols Microwave assisted extraction Ultrasound assisted extraction HPLC–DAD–MS/MS 



High performance liquid chromatography–diode array detector–tandem mass spectrometry


Electrospray ionization


Extracted ions chromatogram


Collision induced dissociation




Deprotonated molecule


Molecular ion


Extraction time


Sample-to-solvent ratio


Microwave assisted extraction


Ultrasound assisted extraction


Response surface methodology


Desirability function



This study was supported by grant from the Italian Ministry of University and Research-MIUR (PON02_00186_2937475, Pro.Ali.Fun project).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Supplementary material

217_2017_3030_MOESM1_ESM.doc (84 kb)
Supplementary material 1 (DOC 84 KB)


  1. 1.
    Medouni-Adrar S, Boulekbache-Makhlouf L, Cadot Y, Medouni-Haroune L, Dahmoune F, Makhoukhe A, Madani K (2015) Ind Crops Prod 77:123–132CrossRefGoogle Scholar
  2. 2.
  3. 3.
    Galanakis CM (2012) Trends Food Sci Technol 26:68–87CrossRefGoogle Scholar
  4. 4.
    Kammerer DR, Kammerer J, Valet R, Carle R (2014) Food Res Int 65:2–12CrossRefGoogle Scholar
  5. 5.
    Karabegović IT, Stojičević SS, Veličković DT, Todorović ZB, Nikolić N, Lazić ML (2014) Ind Crops Prod 54:142–148CrossRefGoogle Scholar
  6. 6.
    Crupi P, Coletta A, Milella RA, Perniola R, Gasparro M, Genghi R, Antonacci D (2012) J Food Sci 77:C174–C181CrossRefGoogle Scholar
  7. 7.
    Crupi P, Pichierri A, Basile T, Antonacci D (2013) Food Chem 141:802–808CrossRefPubMedGoogle Scholar
  8. 8.
    Crupi P, Bergamini C, Perniola R, Dipalmo T, Clodoveo ML, Antonacci D (2015) Eur Food Res Technol 241:487–496CrossRefGoogle Scholar
  9. 9.
    Carrieri C, Milella RA, Incampo F, Crupi P, Antonacci D, Semeraro N, Colucci M (2013) Food Chem 140:647–653CrossRefPubMedGoogle Scholar
  10. 10.
    Tagliazucchi D, Verzelloni E, Bertolini D, Conte A (2010) Food Chem 120:599–606CrossRefGoogle Scholar
  11. 11.
    Dahmoune F, Boulekbache L, Moussi K, Aoun O, Spigno G, Madani K (2013) Ind Crops Prod 50:77–87CrossRefGoogle Scholar
  12. 12.
    Pinelo M, Rubilar M, Jerez M, Sineiro J, José Nunez M (2005) J Agric Food Chem 53:2111–2117CrossRefPubMedGoogle Scholar
  13. 13.
    Wong-Paz JE, Contreras-Esquivel JC, Muniz-Marquez D, Belmares R, Rodriguez R, Flores P, Aguilar CN (2014) Am J Agric Biol Sci 9:299–310CrossRefGoogle Scholar
  14. 14.
    Mané C, Souquet JM, Ollé D, Verriés C, Véran F, Mazerolles G, Cheynier V, Fulcrand H (2007) J Agric Food Chem 55:7224–7233CrossRefPubMedGoogle Scholar
  15. 15.
    Wang L, Weller CL (2006) Trends Food Sci Technol 17:300–312CrossRefGoogle Scholar
  16. 16.
    Drosou C, Kyriakopoulou K, Bimpilas A, Tsimogiannis D, Krokida M (2015) Ind Crops Prod 75:141–149CrossRefGoogle Scholar
  17. 17.
    Santos HM, Capelo JL (2007) Talanta 73:795–802CrossRefPubMedGoogle Scholar
  18. 18.
    Carrera C, Ruiz-Rodríguez A, Palma M, Barroso CG (2012) Anal Chim Acta 732:100–104CrossRefPubMedGoogle Scholar
  19. 19.
    Novak I, Janeiro P, Seruga M, Oliveira-Brett AM (2008) Anal Chim Acta 630:107–115CrossRefPubMedGoogle Scholar
  20. 20.
    Pérez-Serradilla JA, Japón-Luján R, Luque de Castro MD (2007) Anal Chim Acta 602:82–88CrossRefPubMedGoogle Scholar
  21. 21.
    Dahmoune F, Spigno G, Moussi K, Remini H, Cherbal A, Madani K (2014) Ind Crops Prod 61:31–40CrossRefGoogle Scholar
  22. 22.
    Derringer G, Suich R (1980) J Qual Tech 12:214–219CrossRefGoogle Scholar
  23. 23.
    Al Bittar S, Périno-Issartier S, Dangles O, Chemat F (2013) Food Chem 141:3268–3272CrossRefPubMedGoogle Scholar
  24. 24.
    Aspé E, Fernández K (2011) Ind Crops Prod 34:838–844CrossRefGoogle Scholar
  25. 25.
    Spigno G, De Faveri DM (2009) J Food Eng 93:210–217CrossRefGoogle Scholar
  26. 26.
    Spigno G, Tramelli L, De Faveri DM (2007) J Food Eng 81:200–208CrossRefGoogle Scholar
  27. 27.
    Trošt K, Klančnik A, Vodopivec BM, Lemut MS, Novšak KJ, Možina SS (2016) J Sci Food Agric 96:4809–4820CrossRefPubMedGoogle Scholar
  28. 28.
    Nuutila AM, Kammiovirta K, Oksman-Caldentey KM (2002) Food Chem 76:519–525CrossRefGoogle Scholar
  29. 29.
    Nicoué EE, Savard S, Belkacemi K (2007) J Agric Food Chem 55:5626–5635CrossRefPubMedGoogle Scholar
  30. 30.
    Wang J, Sun B, Cao Y, Tian Y, Li X (2008) Food Chem 106:804–810CrossRefGoogle Scholar
  31. 31.
    Corrales M, Toepfl S, Butz P, Knorr D, Tausher B (2008) Inn Food Sci Emerg Technol 9:85–91CrossRefGoogle Scholar
  32. 32.
    Fabre N, Rustan I, de Hoffmann E, Quentin-Leclercq J (2001) J Am Soc Mass Spectrom12:707–715CrossRefPubMedGoogle Scholar
  33. 33.
    Cacace JE, Mazza G (2003) J Food Sci 68:240–248CrossRefGoogle Scholar
  34. 34.
    Liazid A, Guerrero RF, Cantos E, Palma M, Barroso CG (2011) Food Chem 124:1238–1243CrossRefGoogle Scholar
  35. 35.
    Ghafoor K, Choi YH, Jeon JY, Jo IH (2009) J Agric Food Chem 57:4988–4994CrossRefPubMedGoogle Scholar
  36. 36.
    Butković V, Klasinc L, Bors W (2004) J Agric Food Chem 52:2816–2820CrossRefPubMedGoogle Scholar
  37. 37.
    Liazid A, Palma M, Brigui J, Barroso CG (2007) J Chromatogr A 1140:29–34CrossRefPubMedGoogle Scholar
  38. 38.
    Ince AE, Sahin S, Sumnu G (2014) J Food Sci Technol 51:2776–2782CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Pasquale Crupi
    • 1
    Email author
  • Tiziana Dipalmo
    • 2
  • Maria Lisa Clodoveo
    • 2
  • Aline T. Toci
    • 3
  • Antonio Coletta
    • 1
  1. 1.CREA-VE-Consiglio per la Ricerca in Agricoltura e l’analisi dell’Economia Agraria, Viticoltura ed EnologiaTuriItaly
  2. 2.Department of Agricultural and Environmental ScienceUniversity of BariBariItaly
  3. 3.Instituto Latino-Americano de Ciências da Vida e da Natureza Centro Interdisciplinar de Ciências da NaturezaFoz do IguaçuBrazil

Personalised recommendations