European Food Research and Technology

, Volume 244, Issue 6, pp 959–977 | Cite as

Carob as cocoa substitute: a review on composition, health benefits and food applications

  • Andreas Loullis
  • Eftychia PinakoulakiEmail author
Review Article


Cocoa originates from the beans of the cocoa tree (Theobroma cacao L.). It is an important commodity and the main ingredient in chocolate manufacture. Its value and quality are related to complex flavors and to its distinct sensory properties. The increasing demand for cocoa and its rising price urges the research for cocoa substitutes. A potential substitute for cocoa is carob. Carob is the fruit of an evergreen tree (Ceratonia siliqua L.) cultivated in the Mediterranean area, well known for its valuable locust bean gum and also for carob powder and syrup that are obtained from carob pulp. Cocoa beans and carob pods contain various phytochemicals including polyphenols, proteins and amino acids, fatty acids, carbohydrates and fiber. Phytochemicals represent an important source of nutrients and compounds that are beneficial to human health. In this review, phytochemicals in cocoa beans and carob pods and their impact on human health are reviewed. The bioactive compounds that are present in carob, in conjunction with the cocoa-like flavors and unique sensory properties that are enhanced by carob powder roasting, underline carob’s potential to substitute cocoa in various food products. These food applications are discussed in this review.


Carob Cocoa substitute Phytochemicals Health benefits 



This work was supported by the initiative “Carob: the Black Gold of Cyprus” of the University of Cyprus. The authors thank Prof. Antonis Kakas for critically reading the manuscript.

Compliance with ethical standards

Conflict of interest

Andreas Loullis and Eftychia Pinakoulaki declare that they have no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal studies.


  1. 1.
    Aprotosoaie AC, Luca SV, Miron A (2016) Flavor chemistry of cocoa and cocoa products—an overview. Compr Rev Food Sci Food Saf 15(1):73–91. CrossRefGoogle Scholar
  2. 2.
    Araujo QRD, Gattward JN, Almoosawi S, Parada Costa Silva MDGC, Dantas PADS, Araujo Júnior QRD (2016) Cocoa and human health: from head to foot—a review. Crit Rev Food Sci Nutr 56(1):1–12. CrossRefPubMedGoogle Scholar
  3. 3.
    Kongor JE, Hinneh M, de Walle DV, Afoakwa EO, Boeckx P, Dewettinck K (2016) Factors influencing quality variation in cocoa (Theobroma cacao) bean flavour profile—a review. Food Res Int 82:44–52. CrossRefGoogle Scholar
  4. 4.
    Nair KPP (2010) 5-Cocoa (Theobroma cacao L.). The agronomy and economy of important tree crops of the developing world. Elsevier, London, pp 131–180CrossRefGoogle Scholar
  5. 5.
    Fowler MS (2009) Cocoa beans: from tree to factory. Industrial chocolate manufacture and use. Wiley-Blackwell, New York, pp 10–47Google Scholar
  6. 6.
    Chapter 2 Chocolate Ingredients (2008) In: The Science of Chocolate (2). The Royal Society of Chemistry, pp 11–38Google Scholar
  7. 7.
    Afoakwa EO (2010) Cocoa cultivation, bean composition and chocolate flavour precursor formation and character. Chocolate science and technology. Wiley, New York, pp 12–34Google Scholar
  8. 8.
    Bertazzo A, Comai S, Mangiarini F, Chen S (2013) Composition of Cacao Beans. In: Watson RR, Preedy VR, Zibadi S (eds) Chocolate in health and nutrition. Humana Press, Totowa, pp 105–117CrossRefGoogle Scholar
  9. 9.
    Steinberg FM, Bearden MM, Keen CL Cocoa and chocolate flavonoids: Implications for cardiovascular health. J Acad Nutr Diet 103(2):215–223.
  10. 10.
    Afoakwa EO, Paterson A, Fowler M, Ryan A (2008) Flavor formation and character in cocoa and chocolate: a critical review. Crit Rev Food Sci Nutr 48(9):840–857. CrossRefPubMedGoogle Scholar
  11. 11.
    Lima LJR, Almeida MH, Nout MJR, Zwietering MH (2011) Theobroma cacao L., “The Food of the Gods”: quality determinants of commercial cocoa beans, with particular reference to the impact of fermentation. Crit Rev Food Sci Nutr 51(8):731–761. CrossRefPubMedGoogle Scholar
  12. 12.
    Colombo ML, Pinorini-Godly MT, Conti A (2012) Botany and pharmacognosy of the cacao tree. In: Conti A, Paoletti R, Poli A, Visioli F (eds) Chocolate and Health. Springer, Milan, pp 41–62CrossRefGoogle Scholar
  13. 13.
    Coffee, Tea, Cocoa (2009) In: Food chemistry. Springer, Berlin, Heidelberg, pp 938–970Google Scholar
  14. 14.
    World Cocoa Foundation.
  15. 15.
    The International Cocoa Organization (2000–2016).
  16. 16.
    Medeiros ML, Lannes SCdS (2009) Avaliação química de substitutos de cacau e estudo sensorial de achocolatados formulados. Food Sci Technol (Campinas) 29:247–253CrossRefGoogle Scholar
  17. 17.
    Medeiros ML, Lannes SCdS (2010) Propriedades físicas de substitutos do cacau. Food Sci Technol (Campinas) 30:243–253CrossRefGoogle Scholar
  18. 18.
    Tous J, Romero A, Batlle I (2013) The carob tree: botany, horticulture, and genetic resources. Horticultural reviews, vol 41. Wiley, New York, pp 385–456Google Scholar
  19. 19.
    Gubbuk H, Kafkas E, Guven D, Gunes E (2010) Physical and phytochemical profile of wild and domesticated carob (Ceratonia siliqua L.) genotypes. Span J Agric Res 8(4):1129–1136CrossRefGoogle Scholar
  20. 20.
    Cavdarova M, Makris DP (2014) Extraction kinetics of phenolics from carob (Ceratonia siliqua L.) kibbles using environmentally benign solvents. Waste Biomass Valorization 5(5):773–779. CrossRefGoogle Scholar
  21. 21.
    Tucker SC (1992) The developmental basis for sexual expression in Ceratonia siliqua (Leguminosae: Caesalpinioideae: Cassieae). Am J Bot 79(3):318–327. CrossRefGoogle Scholar
  22. 22.
    Hillcoat D, Lewis G, Verdcourt B (1980) A New Species of Ceratonia (Leguminosae-Caesalpinioideae) from Arabia and the Somali Republic. Kew Bull 35(2):261–271. CrossRefGoogle Scholar
  23. 23.
    Khatib S, Vaya J (2010) Chap. 17—Fig, Carob, Pistachio, and Health A2—Watson, Ronald Ross. In: Preedy VR (ed) Bioactive foods in promoting health. Academic Press, San Diego, pp 245–263CrossRefGoogle Scholar
  24. 24.
    Dakia PA (2011) Chap. 35—Carob (Ceratonia siliqua L.) seeds, endosperm and germ composition, and application to health A2—Preedy, Victor R. In: Watson RR, Patel VB (eds) Nuts and seeds in health and disease prevention. Academic Press, San Diego, pp 293–299CrossRefGoogle Scholar
  25. 25.
    Attokaran M (2011) Carob Pod. Natural food flavors and colorants. Wiley-Blackwell, New York, pp 117–119CrossRefGoogle Scholar
  26. 26.
    Barak S, Mudgil D (2014) Locust bean gum: Processing, properties and food applications—a review. Int J Biol Macromol 66:74–80. CrossRefPubMedGoogle Scholar
  27. 27.
    Davies WNL (1970) The Carob Tree and Its importance in the agricultural economy of cyprus. Econ Bot 24(4):460–470CrossRefGoogle Scholar
  28. 28.
    Prajapati VD, Jani GK, Moradiya NG, Randeria NP, Nagar BJ (2013) Locust bean gum: a versatile biopolymer. Carbohyd Polym 94(2):814–821. CrossRefGoogle Scholar
  29. 29.
    Nasar-Abbas SM, e-Huma Z, Vu T-H, Khan MK, Esbenshade H, Jayasena V (2016) Carob kibble: a bioactive-rich food ingredient. Compr Rev Food Sci Food Saf 15(1):63–72. CrossRefGoogle Scholar
  30. 30.
    Goulas V, Stylos E, Chatziathanasiadou M, Mavromoustakos T, Tzakos A (2016) Functional components of carob fruit: linking the chemical and biological space. Int J Mol Sci 17(11):1875CrossRefPubMedCentralGoogle Scholar
  31. 31.
    Benchikh Y, Louaileche H, George B, Merlin A (2014) Changes in bioactive phytochemical content and in vitro antioxidant activity of carob (Ceratonia siliqua L.) as influenced by fruit ripening. Ind Crops Prod 60:298–303. CrossRefGoogle Scholar
  32. 32.
    Ortega N, Macià A, Romero M-P, Trullols E, Morello J-R, Anglès N, Motilva M-J (2009) Rapid determination of phenolic compounds and alkaloids of carob flour by improved liquid chromatography tandem mass spectrometry. J Agric Food Chem 57(16):7239–7244. CrossRefPubMedGoogle Scholar
  33. 33.
    Custódio L, Fernandes E, Escapa AL, Fajardo A, Aligué R, Alberício F, Neng NR, Nogueira JMF, Romano A (2011) Antioxidant and cytotoxic activities of carob tree fruit pulps are strongly influenced by gender and cultivar. J Agric Food Chem 59(13):7005–7012. CrossRefPubMedGoogle Scholar
  34. 34.
    Food and Agricultural Organization of the United Nations (FAO) (2014).
  35. 35.
    Barracosa P, Osório J, Cravador A (2007) Evaluation of fruit and seed diversity and characterization of carob (Ceratonia siliqua L.) cultivars in Algarve region. Sci Hortic 114(4):250–257. CrossRefGoogle Scholar
  36. 36.
    Cocoa bean processing (2000) In: Beckett ST (ed) The Science of Chocolate. The Royal Society of Chemistry, London, pp 31–48Google Scholar
  37. 37.
    Bernaert H, Blondeel I, Allegaert L, Lohmueller T (2012) Industrial Treatment of Cocoa in Chocolate Production: Health Implications. In: Conti A, Paoletti R, Poli A, Visioli F (eds) Chocolate and Health. Springer, Milan, pp 17–31CrossRefGoogle Scholar
  38. 38.
    Afoakwa EO (2000) Chocolate and cocoa, flavor and quality. Kirk-Othmer encyclopedia of chemical technology. Wiley, New York.
  39. 39.
    Afoakwa EO (2010) Industrial chocolate manufacture–processes and factors influencing quality. Chocolate Science and Technology. Wiley, New York, pp 35–57Google Scholar
  40. 40.
    Oracz J, Nebesny E (2016) Antioxidant properties of cocoa beans (Theobroma cacao L.): influence of cultivar and roasting conditions. Int J Food Prop 19(6):1242–1258. CrossRefGoogle Scholar
  41. 41.
    Tamanna N, Mahmood N (2015) Food processing and maillard reaction products: effect on human health and nutrition. Int J Food Sci. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Owusu M, Petersen MA, Heimdal H (2012) Effect of fermentation method, roasting and conching conditions on the aroma volatiles of dark chocolate. J Food Process Preserv 36(5):446–456. CrossRefGoogle Scholar
  43. 43.
    Giacometti J, Jolić SM, Josić D (2015) Chap. 73—cocoa processing and impact on composition A2—Preedy, Victor. Processing and impact on active components in food. Academic Press, San Diego, pp 605–612CrossRefGoogle Scholar
  44. 44.
    Dand R (2011) 9-Cocoa bean processing and the manufacture of chocolate. The International Cocoa Trade (Third edition). Woodhead Publishing, Cambridge, pp 268–289Google Scholar
  45. 45.
    Afoakwa EO (2010) The chemistry of flavour development during cocoa processing and chocolate manufacture. Chocolate Science and Technology. Wiley, New York, pp 58–72Google Scholar
  46. 46.
    Musa Özcan M, Arslan D, Gökçalik H (2007) Some compositional properties and mineral contents of carob (Ceratonia siliqua) fruit, flour and syrup. Int J Food Sci Nutr 58(8):652–658. CrossRefGoogle Scholar
  47. 47.
    Yousif AK, Alghzawi HM (2000) Processing and characterization of carob powder. Food Chem 69(3):283–287. CrossRefGoogle Scholar
  48. 48.
    Şahin H, Topuz A, Pischetsrieder M, Özdemir F (2009) Effect of roasting process on phenolic, antioxidant and browning properties of carob powder. Eur Food Res Technol 230(1):155. CrossRefGoogle Scholar
  49. 49.
    Vitali Čepo D, Mornar A, Nigović B, Kremer D, Radanović D, Vedrina Dragojević I (2014) Optimization of roasting conditions as an useful approach for increasing antioxidant activity of carob powder. LWT Food Sci Technol 58(2):578–586. CrossRefGoogle Scholar
  50. 50.
    Srour N, Daroub H, Toufeili I, Olabi A (2016) Developing a carob-based milk beverage using different varieties of carob pods and two roasting treatments and assessing their effect on quality characteristics. J Sci Food Agric 96(9):3047–3057. CrossRefPubMedGoogle Scholar
  51. 51.
    Cantalejo MJ (1997) Effects of roasting temperature on the aroma components of carob (Ceratonia siliqua L.). J Agric Food Chem 45(4):1345–1350. CrossRefGoogle Scholar
  52. 52.
    Fadel HHM, Abdel Mageed MA, Abdel Samad AKME., Lotfy SN (2006) Cocoa substitute: evaluation of sensory qualities and flavour stability. Eur Food Res Technol 223(1):125–131. CrossRefGoogle Scholar
  53. 53.
    Arrighi WJ, Hartman TG, Ho CT (1997) Carob bean aroma dependence on roasting conditions. Perfum Flavor 22(1):31–41Google Scholar
  54. 54.
    Spinella F, Rosanò L, Di Castro V, Decandia S, Albini A, Nicotra MR, Natali PG, Bagnato A (2006) Green tea polyphenol epigallocatechin-3-gallate inhibits the endothelin axis and downstream signaling pathways in ovarian carcinoma. Mol Cancer Ther 5(6):1483CrossRefPubMedGoogle Scholar
  55. 55.
    Paul B, Hayes CS, Kim A, Athar M, Gilmour SK (2005) Elevated polyamines lead to selective induction of apoptosis and inhibition of tumorigenesis by (–)-epigallocatechin-3-gallate (EGCG) in ODC/Ras transgenic mice. Carcinogenesis 26(1):119–124. CrossRefPubMedGoogle Scholar
  56. 56.
    Chuang S-E, Cheng A-L, Lin J-K, Kuo M-L (2000) Inhibition by curcumin of diethylnitrosamine-induced hepatic hyperplasia, inflammation, cellular gene products and cell-cycle-related proteins in rats. Food Chem Toxicol 38(11):991–995. CrossRefPubMedGoogle Scholar
  57. 57.
    Dolara P, Luceri C, Filippo CD, Femia AP, Giovannelli L, Caderni G, Cecchini C, Silvi S, Orpianesi C, Cresci A (2005) Red wine polyphenols influence carcinogenesis, intestinal microflora, oxidative damage and gene expression profiles of colonic mucosa in F344 rats. Mutat Res/Fundam Mol Mech Mutagen 591(1–2):237–246. CrossRefGoogle Scholar
  58. 58.
    Chen Y, Tseng S-H, Lai H-S, Chen W-J (2004) Resveratrol-induced cellular apoptosis and cell cycle arrest in neuroblastoma cells and antitumor effects on neuroblastoma in mice. Surgery 136(1):57–66. CrossRefPubMedGoogle Scholar
  59. 59.
    Harper CE, Patel BB, Wang J, Eltoum IA, Lamartiniere CA (2007) Epigallocatechin-3-Gallate suppresses early stage, but not late stage prostate cancer in TRAMP mice: Mechanisms of action. Prostate 67(14):1576–1589. CrossRefPubMedGoogle Scholar
  60. 60.
    Mink PJ, Scrafford CG, Barraj LM, Harnack L, Hong C-P, Nettleton JA, Jacobs DR (2007) Flavonoid intake and cardiovascular disease mortality: a prospective study in postmenopausal women. Am J Clin Nutr 85(3):895–909CrossRefPubMedGoogle Scholar
  61. 61.
    Ghosh D, Scheepens A (2009) Vascular action of polyphenols. Mol Nutr Food Res 53(3):322–331. CrossRefPubMedGoogle Scholar
  62. 62.
    Kuriyama S, Shimazu T, Ohmori K et al (2006) Green tea consumption and mortality due to cardiovascular disease, cancer, and all causes in japan: The ohsaki study. JAMA 296(10):1255–1265. CrossRefPubMedGoogle Scholar
  63. 63.
    Akhlaghi M, Bandy B (2012) Preconditioning and acute effects of flavonoids in protecting cardiomyocytes from oxidative cell death. Oxid Med Cell Longev 2012:9. CrossRefGoogle Scholar
  64. 64.
    Brückner M, Westphal S, Domschke W, Kucharzik T, Lügering A (2012) Green tea polyphenol epigallocatechin-3-gallate shows therapeutic antioxidative effects in a murine model of colitis. J Crohn’s Colitis 6(2):226–235. CrossRefGoogle Scholar
  65. 65.
    Wang J, Ferruzzi MG, Ho L, Blount J, Janle EM, Gong B, Pan Y, Gowda GAN, Raftery D, Arrieta-Cruz I, Sharma V, Cooper B, Lobo J, Simon JE, Zhang C, Cheng A, Qian X, Ono K, Teplow DB, Pavlides C, Dixon RA, Pasinetti GM (2012) Brain-targeted proanthocyanidin metabolites for Alzheimer’s disease treatment. J Neurosci 32(15):5144CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Huang T-C, Lu K-T, Wo Y-YP, Wu Y-J, Yang Y-L (2011) Resveratrol protects rats from Aβ-induced neurotoxicity by the reduction of iNOS expression and lipid peroxidation. PLoS One 6(12):e29102. CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Matissek R (1997) Evaluation of xanthine derivatives in chocolate—nutritional and chemical aspects. Zeitschrift für Lebensmitteluntersuchung und -Forschung A 205(3):175–184CrossRefGoogle Scholar
  68. 68.
    Bravo L (1998) Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 56(11):317–333. CrossRefPubMedGoogle Scholar
  69. 69.
    Tomas-Barberán FA, Cienfuegos-Jovellanos E, Marín A, Muguerza B, Gil-Izquierdo A, Cerdá B, Zafrilla P, Morillas J, Mulero J, Ibarra A, Pasamar MA, Ramón D, Espín JC (2007) A new process to develop a cocoa powder with higher flavonoid monomer content and enhanced bioavailability in healthy humans. J Agric Food Chem 55(10):3926–3935. CrossRefPubMedGoogle Scholar
  70. 70.
    Afoakwa EO (2016) World cocoa production, processing and chocolate consumption pattern. In: Chocolate science and technology. Wiley, Chichester, pp 17–48. CrossRefGoogle Scholar
  71. 71.
    Avallone R, Plessi M, Baraldi M, Monzani A (1997) Determination of chemical composition of carob (Ceratonia siliqua): protein, fat, carbohydrates, and tannins. J Food Compos Anal 10(2):166–172. CrossRefGoogle Scholar
  72. 72.
    Shawakfeh KQ, Ereifej KI (2005) pod characteristics of two Ceratonia siliqua l. varieties from Jordan. Ital J Food Sci 17(2):187–194Google Scholar
  73. 73.
    Sigge GO, lipumbu L, Britz TJ (2011) Proximate composition of carob cultivars growing in South Africa. S Afr J Plant Soil 28(1):17–22. CrossRefGoogle Scholar
  74. 74.
    Khlifa M, Kitane AB,S (2013) Determination of chemical composition of carob pod (Ceratonia siliqua. L.) and its morphological study. J Mater Environ Sci 4(3):348–353Google Scholar
  75. 75.
    Huma Z-E, Jayasena V, Nasar-Abbas SM, Imran M, Khan MK Process optimization of polyphenol extraction from carob (Ceratonia siliqua) kibbles using microwave-assisted technique. J Food Process Preserv.
  76. 76.
    Lattanzio V, Kroon PA, Quideau S, Treutter D (2009) Plant phenolics—secondary metabolites with diverse functions. In: Daayf F, Lattanzio V (eds) Recent advances in polyphenol research. Wiley-Blackwell, Oxford, pp 1–35.
  77. 77.
    Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79(5):727–747CrossRefPubMedGoogle Scholar
  78. 78.
    Wollgast J, Anklam E (2000) Review on polyphenols in Theobroma cacao: changes in composition during the manufacture of chocolate and methodology for identification and quantification. Food Res Int 33(6):423–447. CrossRefGoogle Scholar
  79. 79.
    Afoakwa EO-A EO, Budu AS, Mensah-Brown H, Takrama JF (2015) Roasting effects on phenolic content and free-radical scavenging activities of pulp preconditioned and fermented cocoa (Theobroma cacao) beans. Afr J Food Agric Nutr Dev 15(1):9635–9649Google Scholar
  80. 80.
    Rusconi M, Conti A (2010) Theobroma cacao L., the food of the gods: a scientific approach beyond myths and claims. Pharmacol Res 61(1):5–13. CrossRefPubMedGoogle Scholar
  81. 81.
    Lamuela-Raventós RM, Romero-Pérez AI, Andrés-Lacueva C, Tornero A (2005) Review: health effects of cocoa flavonoids. Food Sci Technol Int 11(3):159–176. CrossRefGoogle Scholar
  82. 82.
    Lau-Cam CA (2013) The Absorption, Metabolism, and Pharmacokinetics of Chocolate Polyphenols. In: Watson RR, Preedy VR, Zibadi S (eds) Chocolate in Health and Nutrition. Humana Press, Totowa, pp 201–246CrossRefGoogle Scholar
  83. 83.
    And I, Recio I, Giner MC, Rios RM, (2012) Cocoa Polyphenols and Their Potential Benefits for Human Health. Oxidat Med Cell Longev 2012:23. CrossRefGoogle Scholar
  84. 84.
    Ortega N, Romero M-P, Macià A, Reguant J, Anglès N, Morelló J-R, Motilva M-J (2008) Obtention and characterization of phenolic extracts from different cocoa sources. J Agric Food Chem 56(20):9621–9627. CrossRefPubMedGoogle Scholar
  85. 85.
    Jinap S, Jamilah B, Nazamid S (2004) Sensory properties of cocoa liquor as affected by polyphenol concentration and duration of roasting. Food Qual Prefer 15(5):403–409. CrossRefGoogle Scholar
  86. 86.
    Papagiannopoulos M, Wollseifen HR, Mellenthin A, Haber B, Galensa R (2004) Identification and quantification of polyphenols in carob fruits (Ceratonia siliqua L.) and derived products by HPLC-UV-ESI/MSn. J Agric Food Chem 52(12):3784–3791. CrossRefPubMedGoogle Scholar
  87. 87.
    Roseiro LB, Duarte LC, Oliveira DL, Roque R, Bernardo-Gil MG, Martins AI, Sepúlveda C, Almeida J, Meireles M, Gírio FM, Rauter AP (2013) Supercritical, ultrasound and conventional extracts from carob (Ceratonia siliqua L.) biomass: Effect on the phenolic profile and antiproliferative activity. Ind Crops Prod 47:132–138. CrossRefGoogle Scholar
  88. 88.
    Rakib E, Chicha H, Abouricha S, Alaoui M, Bouli AA, Hansali M, Owen RW (2010) Determination of phenolic composition of carob pods grown in different regions of Morocco. J Nat Prod 3:134–140Google Scholar
  89. 89.
    Custódio L, Escapa AL, Fernandes E, Fajardo A, Aligué R, Alberício F, Neng N, Nogueira JMF, Romano A (2011) Phytochemical profile, antioxidant and cytotoxic activities of the carob tree (Ceratonia siliqua L.) germ flour extracts. Plant Foods Hum Nutr 66(1):78–84. CrossRefPubMedGoogle Scholar
  90. 90.
    Corsi L, Avallone R, Cosenza F, Farina F, Baraldi C, Baraldi M (2002) Antiproliferative effects of Ceratonia siliqua L. on mouse hepatocellular carcinoma cell line. Fitoterapia 73(7–8):674–684. CrossRefPubMedGoogle Scholar
  91. 91.
    Owen RW, Haubner R, Hull WE, Erben G, Spiegelhalder B, Bartsch H, Haber B (2003) Isolation and structure elucidation of the major individual polyphenols in carob fibre. Food Chem Toxicol 41(12):1727–1738. CrossRefPubMedGoogle Scholar
  92. 92.
    Monteiro J, Alves M, Oliveira P, Silva B (2016) Structure-bioactivity relationships of methylxanthines: trying to make sense of all the promises and the drawbacks. Molecules 21(8):974CrossRefGoogle Scholar
  93. 93.
    Franco R, Oñatibia-Astibia A, Martínez-Pinilla E (2013) Health benefits of methylxanthines in cacao and chocolate. Nutrients 5(10):4159–4173. CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Jahanfar S, Jaafar SH (2015) Effects of restricted caffeine intake by mother on fetal, neonatal and pregnancy outcomes. Cochrane Database Syst Rev. CrossRefPubMedGoogle Scholar
  95. 95.
    Barr HM, Streissguth AP (1991) Caffeine use during pregnancy and child outcome: a 7-year prospective study. Neurotoxicol Teratol 13(4):441–448. CrossRefPubMedGoogle Scholar
  96. 96.
    Gans JH (1984) Comparative toxicities of dietary caffeine and theobromine in the rat. Food Chem Toxicol 22(5):365–369. CrossRefPubMedGoogle Scholar
  97. 97.
    Smit HJ (2011) Theobromine and the pharmacology of cocoa. In: Methylxanthines. Handbook of experimental pharmacology. Springer, Berlin, Heidelberg, pp 201–234. CrossRefGoogle Scholar
  98. 98.
    Glade MJ (2010) Caffeine—not just a stimulant. Nutrition 26(10):932–938. CrossRefPubMedGoogle Scholar
  99. 99.
    Stavric B (1988) Methylxanthines: Toxicity to humans. 2. Caffeine. Food Chem Toxicol 26(7):645–662. CrossRefPubMedGoogle Scholar
  100. 100.
    Ho VTT, Zhao J, Fleet G (2014) Yeasts are essential for cocoa bean fermentation. Int J Food Microbiol 174:72–87. CrossRefPubMedGoogle Scholar
  101. 101.
    Biehl B, Ziegleder G (2003) COCOA | chemistry of processing. In: Caballero B (ed) Encyclopedia of food sciences and nutrition, 2nd edn. Academic Press, Oxford, pp 1436–1448. CrossRefGoogle Scholar
  102. 102.
    Serra Bonvehí J, Ventura Coll F (2000) Evaluation of purine alkaloids and diketopiperazines contents in processed cocoa powder. Eur Food Res Technol 210(3):189–195. CrossRefGoogle Scholar
  103. 103.
    Craig WJ, Nguyen TT (1984) Caffeine and theobromine levels in cocoa and carob products. J Food Sci 49(1):302–303. CrossRefGoogle Scholar
  104. 104.
    Salem ME, FAO (2012) Substituting of cacao by carob pod powder in milk chocolate manufacturing. Aust J Basic Appl Sci 6(3):572–578Google Scholar
  105. 105.
    Voigt J, Biehl B, Wazir SKS (1993) The major seed proteins of Theobroma cacao L. Food Chem 47(2):145–151. CrossRefGoogle Scholar
  106. 106.
    Abecia-Soria L, Pezoa-García NH, Amaya-Farfan J (2005) Soluble albumin and biological value of protein in cocoa (Theobroma cacao L.) beans as a function of roasting time. J Food Sci 70(4):S294-S298. CrossRefGoogle Scholar
  107. 107.
    Voigt J, Biehl B, Heinrichs H, Kamaruddin S, Marsoner GG, Hugi A (1994) In-vitro formation of cocoa-specific aroma precursors: aroma-related peptides generated from cocoa-seed protein by co-operation of an aspartic endoprotease and a carboxypeptidase. Food Chem 49(2):173–180. CrossRefGoogle Scholar
  108. 108.
    Wang Y, Belton PS, Bridon H, Garanger E, Wellner N, Parker ML, Grant A, Feillet P, Noel TR (2001) Physicochemical studies of Caroubin: a gluten-like protein. J Agric Food Chem 49(7):3414–3419. CrossRefPubMedGoogle Scholar
  109. 109.
    Tsatsaragkou K, Yiannopoulos S, Kontogiorgi A, Poulli E, Krokida M, Mandala I (2012) Mathematical approach of structural and textural properties of gluten free bread enriched with carob flour. J Cereal Sci 56(3):603–609. CrossRefGoogle Scholar
  110. 110.
    Tsatsaragkou K, Yiannopoulos S, Kontogiorgi A, Poulli E, Krokida M, Mandala I (2014) Effect of carob flour addition on the rheological properties of gluten-free breads. Food Bioprocess Technol 7(3):868–876. CrossRefGoogle Scholar
  111. 111.
    Adeyeye EI, Akinyeye RO, Ogunlade I, Olaofe O, Boluwade JO (2010) Effect of farm and industrial processing on the amino acid profile of cocoa beans. Food Chem 118(2):357–363. CrossRefGoogle Scholar
  112. 112.
    Ayaz FA, Torun H, Ayaz S, Correia PJ, Alaiz M, Sanz C, GrÚZ J, Strnad M (2007) Determination of chemical composition of anatolian carob pod (Ceratonia siliqua l.): sugars, amino and organic acids, minerals and phenolic compounds. J Food Qual 30(6):1040–1055. CrossRefGoogle Scholar
  113. 113.
    Reineccius GA, Andersen DA, Kavanagh TE, Keeney PG (1972) Identification and quantification of the free sugars in cocoa beans. J Agric Food Chem 20(2):199–202. CrossRefGoogle Scholar
  114. 114.
    Redgwell RJ, Trovato V, Curti D (2003) Cocoa bean carbohydrates: roasting-induced changes and polymer interactions. Food Chem 80(4):511–516. CrossRefGoogle Scholar
  115. 115.
    Biner B, Gubbuk H, Karhan M, Aksu M, Pekmezci M (2007) Sugar profiles of the pods of cultivated and wild types of carob bean (Ceratonia siliqua L.) in Turkey. Food Chem 100(4):1453–1455. CrossRefGoogle Scholar
  116. 116.
    Ruiz-Aceituno L, Rodríguez-Sánchez S, Ruiz-Matute AI, Ramos L, Soria AC, Sanz ML (2013) Optimisation of a biotechnological procedure for selective fractionation of bioactive inositols in edible legume extracts. J Sci Food Agric 93(11):2797–2803. CrossRefPubMedGoogle Scholar
  117. 117.
    Cui SW, Nie S, Roberts KT (2011) 4.42—Functional properties of dietary fiber. In: Moo-Young M (ed) Comprehensive biotechnology, 2nd edn. Academic Press, Burlington, pp 517–525.
  118. 118.
    Cardador-Martínez A, Espino-Sevilla MT, del Campo STM, Alonzo-Macías M (2017) Dietary fiber as food additive: present and future. In: Hosseinian F, Oomah BD, Campos-Vega R (eds) Dietary fiber functionality in food and nutraceuticals. Wiley, New York, pp 77–94.
  119. 119.
    Gao Y, Yue J (2012) Dietary fiber and human health. In: Yu L, Tsao R, Shahidi F (eds) Cereals and pulses. Wiley-Blackwell, Oxford, pp 261–271.
  120. 120.
    Thebaudin JY, Lefebvre AC, Harrington M, Bourgeois CM (1997) Dietary fibres: nutritional and technological interest. Trends Food Sci Technol 8(2):41–48. CrossRefGoogle Scholar
  121. 121.
    Cui SW, Roberts KT (2009) CHAPTER 13—dietary fiber: fulfilling the promise of added-value formulations A2—Kasapis, Stefan. In: Norton IT, Ubbink JB (eds) Modern biopolymer science. Academic Press, San Diego, pp 399–448CrossRefGoogle Scholar
  122. 122.
    Slavin J (2013) 3—health aspects of dietary fibre A2—Delcour, Jan A. In: Poutanen K (ed) Fibre-rich and wholegrain foods. Woodhead Publishing, Sawston, pp 61–75CrossRefGoogle Scholar
  123. 123.
    Redgwell R, Trovato V, Merinat S, Curti D, Hediger S, Manez A (2003) Dietary fibre in cocoa shell: characterisation of component polysaccharides. Food Chem 81(1):103–112. CrossRefGoogle Scholar
  124. 124.
    Haber B (2002) Carob fiber benefits and applications. Cereal Foods World 47(8):365–369Google Scholar
  125. 125.
    Saura-Calixto F (1988) Effect of condensed tannins in the analysis of dietary fiber in carob pods. J Food Sci 53(6):1769–1771. CrossRefGoogle Scholar
  126. 126.
    Dea ICM, Morrison A (1975) Chemistry and interactions of seed galactomannans. Adv Carbohydr Chem Biochem 31:241–312. CrossRefGoogle Scholar
  127. 127.
    Andrea T, Borchers CLK, Sandra M, Hannum, Eric Gershwin M (2000) Cocoa and chocolate: composition, bioavailability, and health implications. J Med Food 3(2):77–105CrossRefGoogle Scholar
  128. 128.
    Lehrian DW, Keeney PG, Butler DR (1980) Triglyceride characteristics of cocoa butter from cacao fruit matured in a microclimate of elevated temperature1. J Am Oil Chem Soc 57(2):66–69. CrossRefGoogle Scholar
  129. 129.
    Lairon D (1997) Dietary fatty acids and arteriosclerosis. Biomed Pharmacother 51(8):333–336. CrossRefPubMedGoogle Scholar
  130. 130.
    Grundy SM (1994) Influence of stearic acid on cholesterol metabolism relative to other long-chain fatty acids. Am J Clin Nutr 60(6):986S-990SCrossRefPubMedGoogle Scholar
  131. 131.
    Gharibzahedi SMT, Jafari SM (2017) The importance of minerals in human nutrition: Bioavailability, food fortification, processing effects and nanoencapsulation. Trends Food Sci Technol 62:119–132. CrossRefGoogle Scholar
  132. 132.
    Campbell I (2017) Macronutrients, minerals, vitamins and energy. Anaesth Intensive Care Med 18(3):141–146. CrossRefGoogle Scholar
  133. 133.
    Cole L, Kramer PR (2016) Chapter 5.2—Vitamins and minerals. In: Human physiology, biochemistry and basic medicine. Academic Press, Boston, pp 165–175. CrossRefGoogle Scholar
  134. 134.
    Singh G, Arora S, Sharma GS, Sindhu JS, Kansal VK, Sangwan RB (2007) Heat stability and calcium bioavailability of calcium-fortified milk. LWT Food Sci Technol 40(4):625–631. CrossRefGoogle Scholar
  135. 135.
    Afoakwa EO, Quao J, Takrama J, Budu AS, Saalia FK (2013) Chemical composition and physical quality characteristics of Ghanaian cocoa beans as affected by pulp pre-conditioning and fermentation. J Food Sci Technol 50(6):1097–1105. CrossRefPubMedGoogle Scholar
  136. 136.
    Torres-Moreno M, Torrescasana E, Salas-Salvadó J, Blanch C (2015) Nutritional composition and fatty acids profile in cocoa beans and chocolates with different geographical origin and processing conditions. Food Chemistry 166 (Supplement C):125–132.
  137. 137.
    Chatterjee S (2016) Chapter two—oxidative stress, inflammation, and disease A2—Dziubla, Thomas. In: Butterfield DA (ed) Oxidative stress and biomaterials. Academic Press, New York, pp 35–58CrossRefGoogle Scholar
  138. 138.
    Lushchak VI (2014) Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact 224:164–175. CrossRefPubMedGoogle Scholar
  139. 139.
    Pham-Huy LA, He H, Pham-Huy C (2008) Free radicals, antioxidants in disease and health. Int J Biomed Sci 4(2):89–96PubMedPubMedCentralGoogle Scholar
  140. 140.
    Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48(6):749–762. CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Milatovic D, Zaja-Milatovic S, Gupta RC (2016) In: Nutraceuticals Chap. 29—oxidative stress and excitotoxicity: antioxidants from nutraceuticals. Academic Press, Boston, pp 401–413Google Scholar
  142. 142.
    Scalbert A, Manach C, Morand C, Rémésy C, Jiménez L (2005) Dietary polyphenols and the prevention of diseases. Crit Rev Food Sci Nutr 45(4):287–306. CrossRefPubMedGoogle Scholar
  143. 143.
    Loffredo L, Violi F (2012) Polyphenolic antioxidants and health. In: Conti A, Paoletti R, Poli A, Visioli F (eds) Chocolate and health. Springer Milan, Milano, pp 77–85CrossRefGoogle Scholar
  144. 144.
    Makris DKP (2004) Carob pods (Ceratonia siliqua L.) as a source of polyphenolic antioxidants. Food Technol Biotechnol 42(2):105–108Google Scholar
  145. 145.
    Kumazawa S, Taniguchi M, Suzuki Y, Shimura M, Kwon M-S, Nakayama T (2002) Antioxidant activity of polyphenols in carob pods. J Agric Food Chem 50(2):373–377. CrossRefPubMedGoogle Scholar
  146. 146.
    Jalil A, Ismail A (2008) Polyphenols in cocoa and cocoa products: is there a link between antioxidant properties and health?. Molecules 13(9):2190CrossRefPubMedGoogle Scholar
  147. 147.
    Othman A, Ismail A, Abdul Ghani N, Adenan I (2007) Antioxidant capacity and phenolic content of cocoa beans. Food Chem 100(4):1523–1530. CrossRefGoogle Scholar
  148. 148.
    Martín MA, Ramos S (2016) Cocoa polyphenols in oxidative stress: potential health implications. J Funct Foods 27:570–588. CrossRefGoogle Scholar
  149. 149.
    Brglez Mojzer E, Knez Hrnčič M, Škerget M, Knez Ž, Bren U (2016) Polyphenols: extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules 21(7):901CrossRefGoogle Scholar
  150. 150.
    Sebai HSA, Chehimi L, Rtibi K, Amri M, El-Benna J, Sakly M (2013) In vitro and in vivo antioxidant properties of Tunisian carob (Ceratonia siliqua L.). J Med Plants Res 7(2):85–90Google Scholar
  151. 151.
    <bib id="bib151">Zulim Botega D, Bastida S, Marmesat S, Pérez-Olleros L, Ruiz-Roso B, Sánchez-Muniz FJ (2009) Carob Fruit Polyphenols Reduce Tocopherol Loss, Triacylglycerol Polymerization and Oxidation in Heated Sunflower Oil. J Am Oil Chem Soc 86(5):419–425.</bib>CrossRefGoogle Scholar
  152. 152.
    Bastida S, Sánchez-Muniz FJ, Olivero R, Pérez-Olleros L, Ruiz-Roso B, Jiménez-Colmenero F (2009) Antioxidant activity of Carob fruit extracts in cooked pork meat systems during chilled and frozen storage. Food Chem 116(3):748–754. CrossRefGoogle Scholar
  153. 153.
    Sjögren B, Bigert C, Gustavsson P (2015) Chap. 16 - Cardiovascular Disease A2 - Nordberg, Gunnar F. In: Fowler BA, Nordberg M (eds) Handbook on the Toxicology of Metals (Fourth Edition). Academic Press, San Diego, pp 313–331CrossRefGoogle Scholar
  154. 154.
    Hoffman R, Gerber M, Hoffman R, Gerber M (2011) Cardiovascular Diseases. The Mediterranean Diet, John Wiley & Sons, Ltd., pp 258–292Google Scholar
  155. 155.
    Cole L, Kramer PR (2016) Chap. 6.4 - Cardiovascular Disease. Human Physiology, Biochemistry and Basic Medicine. Academic Press, Boston, pp 201–204CrossRefGoogle Scholar
  156. 156.
    Ross R (1999) Atherosclerosis—an inflammatory disease. N Engl J Med 340(2):115–126. CrossRefPubMedGoogle Scholar
  157. 157.
    Hansson GK, Hamsten A (2012) 70 - Atherosclerosis, Thrombosis, and Vascular Biology A2—Goldman, Lee. In: Schafer AI (ed) Goldman’s Cecil Medicine (Twenty-Fourth Edition). W.B. Saunders, Philadelphia, pp 409–412CrossRefGoogle Scholar
  158. 158.
    Quiñones M, Miguel M, Aleixandre A (2013) Beneficial effects of polyphenols on cardiovascular disease. Pharmacol Res 68(1):125–131. CrossRefPubMedGoogle Scholar
  159. 159.
    Vita JA (2005) Polyphenols and cardiovascular disease: effects on endothelial and platelet function. Am J Clin Nutr 81(1):292S-297SCrossRefPubMedGoogle Scholar
  160. 160.
    Habauzit V, Morand C (2012) Evidence for a protective effect of polyphenols-containing foods on cardiovascular health: an update for clinicians. Ther Adv Chron Dis 3(2):87–106. CrossRefGoogle Scholar
  161. 161.
    Osakabe N, Baba S, Yasuda A, Iwamoto T, Kamiyama M, Tokunaga T, Kondo K (2004) Dose-response study of daily cocoa intake on the oxidative susceptibility of low-density lipoprotein in healthy human volunteers. J Health Sci 50(6):679–684. CrossRefGoogle Scholar
  162. 162.
    Baba S, Osakabe N, Kato Y, Natsume M, Yasuda A, Kido T, Fukuda K, Muto Y, Kondo K (2007) Continuous intake of polyphenolic compounds containing cocoa powder reduces LDL oxidative susceptibility and has beneficial effects on plasma HDL-cholesterol concentrations in humans. Am J Clin Nutr 85(3):709–717CrossRefPubMedGoogle Scholar
  163. 163.
    Kurosawa T, Itoh F, Nozaki A, Nakano Y, Katsuda S-i, Osakabe N, Tsubone H, Kondo K, Itakura H (2005) Suppressive Effect of Cocoa Powder on Atherosclerosis in Kurosawa and Kusanagi-hypercholesterolemic Rabbits. J Atheroscler Thromb 12(1):20–28. CrossRefPubMedGoogle Scholar
  164. 164.
    Allgrove J, Davison G (2014) Chap. 19 - Dark Chocolate/Cocoa Polyphenols and Oxidative Stress. Polyphenols in Human Health and Disease. Academic Press, San Diego, pp 241–251Google Scholar
  165. 165.
    Zunft HJF, Lüder W, Harde A, Haber B, Graubaum HJ, Gruenwald J (2001) Carob pulp preparation for treatment of hypercholesterolemia. Adv Ther 18(5):230–236. CrossRefPubMedGoogle Scholar
  166. 166.
    Zunft HJF, Lüder W, Harde A, Haber B, Graubaum HJ, Koebnick C, Grünwald J (2003) Carob pulp preparation rich ininsoluble fibre lowers total and LDL cholesterol inhypercholesterolemic patients. Eur J Nutr 42(5):235–242. CrossRefPubMedGoogle Scholar
  167. 167.
    Ruiz-Roso B, Quintela JC, de la Fuente E, Haya J, Pérez-Olleros L (2010) Insoluble carob fiber rich in polyphenols lowers total and LDL cholesterol in hypercholesterolemic sujects. Plant Foods Hum Nutr 65(1):50–56. CrossRefPubMedGoogle Scholar
  168. 168.
    Valero-Muñoz M, Martín-Fernández B, Ballesteros S, Lahera V, de las Heras N (2014) Carob pod insoluble fiber exerts anti-atherosclerotic effects in rabbits through Sirtuin-1 and Peroxisome proliferator-Activated Receptor-γ Coactivator-1α. J Nutr 144(9):1378–1384. CrossRefPubMedGoogle Scholar
  169. 169.
    Hassanein KMA, Youssef MKE, Ali HM, El-Manfaloty MM (2015) The influence of carob powder on lipid profile and histopathology of some organs in rats. Comp Clin Pathol 24(6):1509–1513. CrossRefGoogle Scholar
  170. 170.
    Würsch P (1979) Influence of Tannin-rich carob pod fiber on the cholesterol metabolism in the rat. J Nutr 109(4):685–692CrossRefPubMedGoogle Scholar
  171. 171.
    Hoffman R, Gerber M, Hoffman R, Gerber M (2011) Cancers. The Mediterranean Diet. Wiley, New York, pp 293–342CrossRefGoogle Scholar
  172. 172.
    Moadel AB, Harris MS (2007) Cancer. Comprehensive Handbook of Clinical Health Psychology. Wiley, New York, pp 153–178Google Scholar
  173. 173.
    Ramos S Effects of dietary flavonoids on apoptotic pathways related to cancer chemoprevention. J Nutr Biochem 18(7):427–442.
  174. 174.
    Martin MA, Goya L, Ramos S (2013) Potential for preventive effects of cocoa and cocoa polyphenols in cancer. Food Chem Toxicol 56:336–351. CrossRefPubMedGoogle Scholar
  175. 175.
    Ramos S (2008) Cancer chemoprevention and chemotherapy: dietary polyphenols and signalling pathways. Mol Nutr Food Res 52(5):507–526. CrossRefPubMedGoogle Scholar
  176. 176.
    Manson MM (2003) Cancer prevention—the potential for diet to modulate molecular signalling. Trends Mol Med 9(1):11–18. CrossRefPubMedGoogle Scholar
  177. 177.
    Spadafranca A, Martinez Conesa C, Sirini S, Testolin G (2010) Effect of dark chocolate on plasma epicatechin levels, DNA resistance to oxidative stress and total antioxidant activity in healthy subjects. Br J Nutr 103(7):1008–1014CrossRefPubMedGoogle Scholar
  178. 178.
    Lee KW, Kundu JK, Kim SO, Chun K-S, Lee HJ, Surh Y-J (2006) Cocoa Polyphenols Inhibit Phorbol Ester-Induced Superoxide Anion Formation in Cultured HL-60 Cells and Expression of Cyclooxygenase-2 and Activation of NF-κB and MAPKs in Mouse Skin In Vivo. J Nutr 136(5):1150–1155CrossRefPubMedGoogle Scholar
  179. 179.
    Kim J, Son J, Jung S, Kang N, Lee C, Lee K, Lee H (2010) Cocoa polyphenols suppress TNF-α-induced vascular endothelial growth factor expression by inhibiting phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase kinase-1 (MEK1) activities in mouse epidermal cells. Br J Nutr 104(7):957–964CrossRefPubMedGoogle Scholar
  180. 180.
    Kang NJ, Lee KW, Lee DE, Rogozin EA, Bode AM, Lee HJ, Dong Z (2008) Cocoa procyanidins suppress transformation by inhibiting mitogen-activated protein kinase kinase. J Biol Chem 283(30):20664–20673. CrossRefPubMedPubMedCentralGoogle Scholar
  181. 181.
    Yamagishi M, Natsume M, Osakabe N, Nakamura H, Furukawa F, Imazawa T, Nishikawa A, Hirose M (2002) Effects of cacao liquor proanthocyanidins on PhIP-induced mutagenesis in vitro, and in vivo mammary and pancreatic tumorigenesis in female Sprague–Dawley rats. Cancer Lett 185(2):123–130. CrossRefPubMedGoogle Scholar
  182. 182.
    Yamagishi M, Natsume M, Osakabe N, Okazaki K, Furukawa F, Imazawa T, Nishikawa A, Hirose M (2003) Chemoprevention of lung carcinogenesis by cacao liquor proanthocyanidins in a male rat multi-organ carcinogenesis model. Cancer Lett 191(1):49–57. CrossRefPubMedGoogle Scholar
  183. 183.
    Bisson J-F, Guardia-Llorens M-A, Hidalgo S, Rozan P, Messaoudi M (2008) Protective effect of Acticoa powder, a cocoa polyphenolic extract, on prostate carcinogenesis in Wistar–Unilever rats. Eur J Cancer Prev 17(1):54–61. CrossRefPubMedGoogle Scholar
  184. 184.
    Papież MA, Baran J, Bukowska-Straková K, Krośniak M (2011) Epicatechin administration leads to necrotic cell death of rat leukaemia promyelocytes in vivo. In Vivo 25(1):29–34PubMedGoogle Scholar
  185. 185.
    Granado-Serrano AB, Martín MA, Bravo L, Goya L, Ramos S (2009) A diet rich in cocoa attenuates N-nitrosodiethylamine-induced liver injury in rats. Food Chem Toxicol 47(10):2499–2506. CrossRefPubMedGoogle Scholar
  186. 186.
    Weyant MJ, Carothers AM, Dannenberg AJ, Bertagnolli MM (2001) (+)-Catechin inhibits intestinal tumor formation and suppresses focal adhesion kinase activation in the min/+ mouse. Can Res 61(1):118Google Scholar
  187. 187.
    Klenow S, Glei M (2009) New insight into the influence of carob extract and gallic acid on hemin induced modulation of HT29 cell growth parameters. Toxicol In Vitro 23(6):1055–1061. CrossRefPubMedGoogle Scholar
  188. 188.
    Klenow S, Jahns F, Pool-Zobel BL, Glei M (2009) Does an extract of carob (Ceratonia siliqua L.) have chemopreventive potential related to oxidative stress and drug metabolism in human colon cells? J Agric Food Chem 57(7):2999–3004. CrossRefPubMedGoogle Scholar
  189. 189.
    Klenow S, Glei M, Haber B, Owen R, Pool-Zobel BL (2008) Carob fibre compounds modulate parameters of cell growth differently in human HT29 colon adenocarcinoma cells than in LT97 colon adenoma cells. Food Chem Toxicol 46(4):1389–1397. CrossRefPubMedGoogle Scholar
  190. 190.
    Haber BD (2003) Carob product based antiinflammatory or chemopreventative agent. Google Patents,Google Scholar
  191. 191.
    Rosa CST, Tessele K, Prestes RC, Silveira M, Franco F (2015) Effect of substituting of cocoa powder for carob flour in cakes made with soy and banana flours. Int Food Res J 22(5):2111–2118Google Scholar
  192. 192.
    Iipumbu LSGO., Britz TJ (2008) Compositional analysis of locally cultivated carob (Ceratonia Siliqua) cultivars and development of nutritional food products for a range of market sectors. Stellenbosch University, StellenboschGoogle Scholar
  193. 193.
    Moreira TC, Transfeld da Silva Á, Fagundes C, Ferreira SMR, Cândido LMB, Passos M, Krüger CCH (2017) Elaboration of yogurt with reduced level of lactose added of carob (Ceratonia siliqua L.). LWT Food Sci Technol Part B 76:326–329. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of CyprusNicosiaCyprus

Personalised recommendations