European Food Research and Technology

, Volume 244, Issue 4, pp 721–728 | Cite as

Qualitative and quantitative evaluation of biogenic amines in vitro production by bacteria isolated from ewes’ milk cheeses

  • Torracca Beatrice
  • Pedonese Francesca
  • Turchi Barbara
  • Fratini Filippo
  • Nuvoloni Roberta
Original Paper
  • 121 Downloads

Abstract

Studying the production of biogenic amines (BA) by cheese microbiota is important, because high BA concentrations in food represent a health risk for consumers. Qualitative screening with differential media and HPLC quantification were used to investigate the production of 8 BA (2-phenylethylamine, cadaverine, histamine, putrescine, spermidine, spermine, tryptamine, and tyramine) by 72 isolates from curd and cheese samples manufactured with raw and pasteurised ewes’ milk. Enterobacteriaceae showed good putrescine and cadaverine production, both for number of positive isolates and for concentrations produced (average: 341 and 785 µg ml−1, respectively). Among Enterobacteriaceae data are provided on BA formation by Pantoea conspicua, previously not isolated from food samples. All enterococci formed tyramine, often in high amounts (average: 1608 µg ml−1), and many produced notable 2-phenylethylamine, putrescine, and cadaverine concentrations (average: 184, 121, and 146 µg ml−1, respectively). BA formation by lactobacilli was overall extremely limited, with the notable exception of high tyramine concentrations produced by 1 Lactobacillus paracasei (800 µg ml−1) and 2 Lactobacillus curvatus (> 1700 µg ml−1), all isolated from pasteurised milk samples. Thus, undesired and technologically useful microorganisms both play a role in BA accumulation in cheeses.

Keywords

Biogenic amines Tyramine HPLC Enterococci Lactobacilli Ewes’ milk cheese 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

References

  1. 1.
    EFSA Panel on Biological Hazards (BIOHAZ) (2011) Scientific opinion on risk based control of biogenic amine formation in fermented foods. EFSA J 9(10):2393–2486CrossRefGoogle Scholar
  2. 2.
    Ladero V, Calles-Enríquez M, Fernández M, Alvarez MA (2010) Toxicological effects of dietary biogenic amines. Curr Nutr Food Sci 6:145–156CrossRefGoogle Scholar
  3. 3.
    Shalaby AR (1996) Significance of biogenic amines for food safety and human health. Food Res Int 29:675–690CrossRefGoogle Scholar
  4. 4.
    ten Brink B, Damink C, Joosten HMLJ, Huis in’t Veld JHJ (1990) Occurrence and formation of biologically active amines in foods. Int J Food Microbiol 11:73–84CrossRefGoogle Scholar
  5. 5.
    Commission European (2005) Commission regulation no 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. Off J Eur Union L338:1–26Google Scholar
  6. 6.
    Linares DM, del Rio B, Redruello V, Ladero V, Martin MC, Fernandez M, Ruas-Madiedo P, Alvarez MA (2016) Comparative analysis of the cytotoxicity of the in vitro dietary biogenic amines tyramine and histamine. Food Chem 197:658–663CrossRefGoogle Scholar
  7. 7.
    Bover-Cid S, Holzapfel WH (1999) Improved screening procedure for biogenic amine production by lactic acid bacteria. Int J Food Microbiol 53:33–41CrossRefGoogle Scholar
  8. 8.
    Önal A, Tekkeli SEK, Önal C (2013) A review of the liquid chromatographic methods for the determination of biogenic amines in foods. Food Chem 138:509–515CrossRefGoogle Scholar
  9. 9.
    Roig-Sagués AX, Molina AP, Hernández-Herrero MM (2002) Histamine and tyramine-forming microorganisms in Spanish traditional cheeses. Eur Food Res Technol 215:96–100CrossRefGoogle Scholar
  10. 10.
    Ladero V, Fernández M, Calles-Enríquez M, Sánchez-Llana E, Cañedo E, Martín MC, Alvarez MA (2012) Is the production of the biogenic amines tyramine and putrescine a species-level trait in enterococci? Food Microbiol 30:132–138CrossRefGoogle Scholar
  11. 11.
    Marino M, Maifreni M, Moret S, Rondinini G (2000) The capacity of Enterobacteriaceae species to produce biogenic amines in cheese. Lett Appl Microbiol 31:169–173CrossRefGoogle Scholar
  12. 12.
    Benkerroum N (2016) Biogenic amines in dairy products: origin, incidence, and control means. Compr Rev Food Sci Food Saf 15:801–826CrossRefGoogle Scholar
  13. 13.
    Torracca B, Pedonese F, López MB, Turchi B, Fratini F, Nuvoloni R (2016) Effect of milk pasteurization and of ripening in a cave on biogenic amines content and sensory properties of a pecorino cheese. Int Dairy J 61:189–195CrossRefGoogle Scholar
  14. 14.
    Dutka-Malen S, Evers S, Courvalin P (1995) Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. J Clin Microbiol 33:24–27Google Scholar
  15. 15.
    Berthier F, Ehrlich SD (1998) Rapid species identification within two groups of closely related lactobacilli using PCR primers that target the 16S/23S rRNA spacer region. FEMS Microbiol Lett 161:97–106CrossRefGoogle Scholar
  16. 16.
    Dickson EM, Riggio MP, Macpherson L (2005) A novel species-specific PCR assay for identifying Lactobacillus fermentum. J Med Microbiol 54:299–303CrossRefGoogle Scholar
  17. 17.
    Desai AR, Shah NP, Powell IB (2006) Discrimination of dairy industry isolates of the Lactobacillus casei group. J Dairy Sci 89:3345–3351CrossRefGoogle Scholar
  18. 18.
    Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ, Wade WG (1998) Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Env Microbiol 64:795–799Google Scholar
  19. 19.
    Moeller V (1954) Distribution of amino acid decarboxylases in Enterobacteriaceae. Acta Pathol Microbiol Scand APMIS 35:259–277CrossRefGoogle Scholar
  20. 20.
    Torracca B, Nuvoloni R, Ducci M, Bacci C, Pedonese F (2015) Biogenic amines content of four types of “Pecorino” cheese manufactured in Tuscany. Int J Food Prop 18:999–1005CrossRefGoogle Scholar
  21. 21.
    Innocente N, Biasutti M, Padovese M, Moret S (2007) Determination of biogenic amines in cheese using HPLC technique and direct derivatization of acid extract. Food Chem 101:1285–1289CrossRefGoogle Scholar
  22. 22.
    R Core Team (2016) R: a language and environment for statistical computing R Foundation for Statistical Computing Vienna Austria. URL https://www.R-project.org/
  23. 23.
    Pircher A, Bauer F, Paulsen P (2007) Formation of cadaverine, histamine, putrescine and tyramine by bacteria isolated from meat fermented sausages and cheeses. Eur Food Res Technol 226:225–231CrossRefGoogle Scholar
  24. 24.
    Walterson AM, Stavrinides J (2015) Pantoea: insights into a highly versatile and diverse genus within the Enterobacteriaceae. FEMS Microbiol Rev 39:968–984CrossRefGoogle Scholar
  25. 25.
    Brady CL, Cleenwerck I, Venter SN, Engelbeen K, De Vosm P, Coutinho TA (2010) Emended description of the genus Pantoea description of four species from human clinical samples Pantoea septica sp nov Pantoea eucrina sp nov Pantoea brenneri sp nov and Pantoea conspicua sp nov and transfer of Pectobacterium cypripedii (Hori 1911) Brenner et al 1973 emend Hauben et al 1998 to the genus as Pantoea cypripedii comb Nov. Int J Syst Evol Microbiol 60:2430–2440CrossRefGoogle Scholar
  26. 26.
    Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST (eds) (1994) Bergey’s manual of determinative bacteriology, 9th edn. Williams Wilkins, Baltimore USAGoogle Scholar
  27. 27.
    Gavini F, Mergaert J, Beji A, Mielcarek C, Izard D, Kersters K, De Ley J (1989) Transfer of Enterobacter agglomerans (Beijerinck 1988) Ewing and Fife 1972 to Pantoea gen. nov. as Pantoea agglomerans comb. nov. and description of Pantoea dispersa sp. nov. Int J Syst Bacteriol 39:337–345CrossRefGoogle Scholar
  28. 28.
    Maifreni M, Frigo F, Bartolomeoli I, Innocente N, Biasutti M, Marino M (2013) Identification of the Enterobacteriaceae in the Montasio cheese and assessment of their amino acid decarboxylase activity. J Dairy Res 80:122–127CrossRefGoogle Scholar
  29. 29.
    Martuscelli M, Gardini F, Torriani S, Mastrocola D, Serio A, Chaves-López C, Schirone M, Suzzi G (2005) Production of biogenic amines by lactic acid bacteria and bifidobacter isolated from dairy products and beer. Int J Food Sci Technol 47:2086–2091Google Scholar
  30. 30.
    Bargossi E, Tabanelli G, Montanari C, Lanciotti R, Gatto V, Gardini F, Torriani S (2015) Tyrosine decarboxylase activity of enterococci grown in media with different nutritional potential: tyramine and 2-phenylethylamine accumulation and tyrDC gene expression. Front Microbiol 6:259Google Scholar
  31. 31.
    Fernández-García E, Tomillo J, Núñez M (1999) Effect of added proteinases and level of starter culture on the formation of biogenic amines in raw milk Manchego cheese. Int J Food Microbiol 52:189–196CrossRefGoogle Scholar
  32. 32.
    Bonetta S, Carraro E, Coïsson JD, Travaglia F, Arlorio M (2008) Detection of biogenic amine producer bacteria in a typical Italian goat cheese. J Food Protect 71:205–209CrossRefGoogle Scholar
  33. 33.
    Özogul F, Özogul Y (2007) The ability of biogenic amines and ammonia production by single bacterial cultures. Eur Food Res Technol 225:385–394CrossRefGoogle Scholar
  34. 34.
    Arena ME, Manca de Nadra MC (2001) Biogenic amine production by Lactobacillus. J Appl Microbiol 90:158–162CrossRefGoogle Scholar
  35. 35.
    Marcobal A, De Las Rivas B, Muñoz R (2006) First genetic characterization of a bacterial β-phenylethylamine biosynthetic enzyme in Enterococcus faecium RM58. FEMS Microbiol Lett 258:144–149CrossRefGoogle Scholar
  36. 36.
    Lorencová E, Buňcová L, Matoulkove D, Dráb V, Pleva P, Kubáň V, Buňka F (2012) Production of biogenic amines by lactic acid bacteria and bifidobacteria isolated from dairy products and beer. Int J Food Sci Technol 47:2086–2091CrossRefGoogle Scholar
  37. 37.
    Ladero V, Martín MC, Redruello B, Mayo B, Flórez AB, Fernández M, Alvarez MA (2015) Genetic and functional analysis of biogenic amine production capacity among starter and non-starter lactic acid bacteria isolated from artisanal cheeses. Eur Food Res Technol 24:377–383CrossRefGoogle Scholar
  38. 38.
    Ladero V, Sánchez-Llana E, Fernández M, Alvarez MA (2011) Survival of biogenic amine-producing dairy LAB strains at pasteurisation conditions. Int J Food Sci Technol 46:516–521CrossRefGoogle Scholar
  39. 39.
    Jordan KN, Cogan TM (1999) Heat resistance of Lactobacillus spp isolated from Cheddar cheese. Lett Appl Microbiol 29:136–140CrossRefGoogle Scholar
  40. 40.
    Latorre-Moratalla ML, Bover-Cid S, Bosch-Fusté J, Vidal-Carou MC (2012) Influence of technological conditions of sausage fermentation on the aminogenic activity of L. curvatus CTC273. Food Microbiol 9:43–48CrossRefGoogle Scholar
  41. 41.
    Latorre-Moratalla ML, Bover-Cid S, Bosch-Fusté J, Veciana-Nogués MT, Vidal-Carou MC (2014) Amino acid availability as an influential factor on the biogenic amine formation in dry fermented sausages. Food Control 36:76–81CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Veterinary ScienceUniversity of PisaPisaItaly

Personalised recommendations