Advertisement

European Food Research and Technology

, Volume 243, Issue 12, pp 2211–2224 | Cite as

Valorization of Lagrein grape pomace as a source of phenolic compounds: analysis of the contents of anthocyanins, flavanols and antioxidant activity

  • J. Valls
  • S. Agnolet
  • F. Haas
  • I. Struffi
  • F. Ciesa
  • P. Robatscher
  • Michael OberhuberEmail author
Original Paper

Abstract

The phenolic composition of grape pomace seeds and skins in the South Tyrolean autochthonous variety Lagrein has been studied for three different microfermentation experiments. 23 anthocyanins and 9 flavan-3-ols were determined by UHPLC–MS/MS in both the skins and seeds of grapes and pomace. The remaining contents of total polyphenols, total anthocyanins and the antioxidant capacity of the pomace after maceration, as measured by the DPPH, FRAP and ABTS methodologies, depended not only on the initial contents in the grapes, but also on the maceration time. Even though all anthocyanins in skins were highly reduced during the maceration (maximum recoveries of 40%), the residual contents in the pomace were still considerable (2–8 mg/g fresh weight, FW). The content of flavan-3-ols in seeds remained very stable (recoveries of 70–100%). Our results show that the Lagrein grape pomace is a promising source for antioxidant phenolic compounds that can be of interest as nutraceuticals.

Keywords

Anthocyanins Flavan-3-ols Proanthocyanidins Grape seed UHPLC–MS/MS Grape marc 

Notes

Acknowledgements

Laimburg Research Centre for Agriculture and Forestry is funded by the Autonomous Province of Bolzano. Financial support by the ERDF Program (Project LagReIn Nr. 4-1a-168 CUP: H21J11000020006 and Project POMOSANO Nr. 5-1a-238 CUP: H21J12000060001) is gratefully acknowledged. We also want to thank the viticulturists of South Tyrol that provided the Lagrein samples and Magdalena Niedrist, Martina Schenk, Alexander Nardo and Michael Ohler for technical assistance.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Supplementary material

217_2017_2923_MOESM1_ESM.pdf (538 kb)
Supplementary material 1 (PDF 538 kb)
217_2017_2923_MOESM2_ESM.docx (22 kb)
Supplementary material 2 (DOCX 22 kb)

References

  1. 1.
    FAOSTAT, Food and Agriculture Organization of the United Nations (2014). http://faostat3.fao.org/browse/Q/QC/E. Accessed 5 Mar 2017
  2. 2.
    Drosou C, Kyriakopoulou K, Bimpilas A, Tsimogiannis D, Krokida M (2015) A comparative study on different extraction techniques to recover red grape pomace polyphenols from vinification byproducts. Ind Crops Prod 75(Part B):141–149CrossRefGoogle Scholar
  3. 3.
    Antoniolli A, Fontana AR, Piccoli P, Bottini R (2015) Characterization of polyphenols and evaluation of antioxidant capacity in grape pomace of the cv. Malbec. Food Chem 178:172–178CrossRefGoogle Scholar
  4. 4.
    Ruberto G, Renda A, Daquino C, Amico V, Spatafora C, Tringali C, Tommasi ND (2007) Polyphenol constituents and antioxidant activity of grape pomace extracts from five Sicilian red grape cultivars. Food Chem 100(1):203–210CrossRefGoogle Scholar
  5. 5.
    Rondeau P, Gambier F, Jolibert F, Brosse N (2013) Compositions and chemical variability of grape pomaces from French vineyard. Ind Crops Prod 43:251–254CrossRefGoogle Scholar
  6. 6.
    Ping L, Pizzi A, Guo ZD, Brosse N (2011) Condensed tannins extraction from grape pomace: characterization and utilization as wood adhesives for wood particleboard. Ind Crops Prod 34(1):907–914CrossRefGoogle Scholar
  7. 7.
    Deng Q, Penner MH, Zhao Y (2011) Chemical composition of dietary fiber and polyphenols of five different varieties of wine grape pomace skins. Food Res Int 44(9):2712–2720CrossRefGoogle Scholar
  8. 8.
    Fontana AR, Antoniolli A, Bottini R (2013) Grape pomace as a sustainable source of bioactive compounds: extraction, characterization, and biotechnological applications of phenolics. J Agric Food Chem 61(38):8987–9003CrossRefGoogle Scholar
  9. 9.
    Tournour HH, Segundo MA, Magalhães LM, Barreiros L, Queiroz J, Cunha LM (2015) Valorization of grape pomace: extraction of bioactive phenolics with antioxidant properties. Ind Crops Prod 74:397–406CrossRefGoogle Scholar
  10. 10.
    Skrovankova S, Sumczynski D, Mlcek J, Jurikova T, Sochor J (2015) Bioactive compounds and antioxidant activity in different types of berries. Int J Mol Sci 16(10):24673–24706CrossRefGoogle Scholar
  11. 11.
    Rockenbach II, Rodrigues E, Gonzaga LV, Caliari V, Genovese MI, Gonçalves AEDSS, Fett R (2011) Phenolic compounds content and antioxidant activity in pomace from selected red grapes (Vitis vinifera L. and Vitis labrusca L.) widely produced in Brazil. Food Chem 127(1):174–179CrossRefGoogle Scholar
  12. 12.
    Khlebnikov AI, Schepetkin IA, Domina NG, Kirpotina LN, Quinn MT (2007) Improved quantitative structure-activity relationship models to predict antioxidant activity of flavonoids in chemical, enzymatic, and cellular systems. Bioorg Med Chem 15(4):1749–1770CrossRefGoogle Scholar
  13. 13.
    Fontana AR, Antoniolli A, Bottini R (2016) Development of a high-performance liquid chromatography method based on a core-shell column approach for the rapid determination of multiclass polyphenols in grape pomaces. Food Chem 192:1–8CrossRefGoogle Scholar
  14. 14.
    Valls J, Millán S, Martí MP, Borràs E, Arola L (2009) Advanced separation methods of food anthocyanins, isoflavones and flavanols. J Chromatogr A 1216(43):7143–7172CrossRefGoogle Scholar
  15. 15.
    Moreno-Pérez A, Fernández-Fernández JI, Bautista-Ortín AB, Gómez-Plaza E, Martínez-Cutillas A, Gil-Muñoz R (2013) Influence of winemaking techniques on proanthocyanidin extraction in Monastrell wines from four different areas. Eur Food Res Technol 236(3):473–481CrossRefGoogle Scholar
  16. 16.
    Dimitrovska M, Bocevska M, Dimitrovski D, Murkovic M (2011) Anthocyanin composition of Vranec, Cabernet Sauvignon, Merlot and Pinot Noir grapes as indicator of their varietal differentiation. Eur Food Res Technol 232(4):591–600CrossRefGoogle Scholar
  17. 17.
    Cejudo-Bastante MJ, Vicario A, Guillén DA, Hermosín-Gutiérrez I, Pérez-Coello MS (2015) Phenolic characterization of minor red grape varieties grown in Castilla-La Mancha region in different vinification stages. Eur Food Res Technol 240(3):595–607CrossRefGoogle Scholar
  18. 18.
    Costa E, Cosme F, Rivero-Pérez MD, Jordão AM, González-SanJosé ML (2015) Influence of wine region provenance on phenolic composition, antioxidant capacity and radical scavenger activity of traditional Portuguese red grape varieties. Eur Food Res Technol 241(1):61–73CrossRefGoogle Scholar
  19. 19.
    Vouillamoz JF, Grando MS (2006) Genealogy of wine grape cultivars: “Pinot” is related to “Syrah”. Heredity (Edinb) 97(2):102–110CrossRefGoogle Scholar
  20. 20.
    Pertoll G, Pedri U, Kobler A (2011) Influence of site, soil and conditions of cultivation on the quality of Lagrein wines. Riv Vitic Enol 64(4):15–29Google Scholar
  21. 21.
    Wolfe K, Wu X, Liu RH (2003) Antioxidant activity of apple peels. J Agric Food Chem 51(3):609–614CrossRefGoogle Scholar
  22. 22.
    Lee J, Durst RW, Wrolstad R (2005) Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study. J AOAC Int 88(5):1269–1278Google Scholar
  23. 23.
    Sun B, Ricardo-da-Silva JM, Spranger I (1998) Critical factors of vanillin assay for catechins and proanthocyanidins. J Agric Food Chem 46(10):4267–4274CrossRefGoogle Scholar
  24. 24.
    Ribéreau-Gayon P, Stonestreet E (1996) Le dosage des tanins du vin rouge et détermination de leur structure. Chem Anal 48:188–192Google Scholar
  25. 25.
    Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26(9–10):1231–1237CrossRefGoogle Scholar
  26. 26.
    Sharma OP, Bhat TK (2009) DPPH antioxidant assay revisited. Food Chem 113(4):1202–1205CrossRefGoogle Scholar
  27. 27.
    Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239(1):70–76CrossRefGoogle Scholar
  28. 28.
    Arapitsas P, Perenzoni D, Nicolini G, Mattivi F (2012) Study of sangiovese wines pigment profile by UHPLC-MS/MS. J Agric Food Chem 60(42):10461–10471CrossRefGoogle Scholar
  29. 29.
    Kontoudakis N, Esteruelas M, Fort F, Canals JM, Zamora F (2010) Comparison of methods for estimating phenolic maturity in grapes: correlation between predicted and obtained parameters. Anal Chim Acta 660(1–2):127–133CrossRefGoogle Scholar
  30. 30.
    Chidambara Murthy KN, Singh RP, Jayaprakasha GK (2002) Antioxidant activities of grape (Vitis vinifera) pomace extracts. J Agric Food Chem 50(21):5909–5914CrossRefGoogle Scholar
  31. 31.
    Canals R, Llaudy MC, Valls J, Canals JM, Zamora F (2005) Influence of ethanol concentration on the extraction of color and phenolic compounds from the skin and seeds of Tempranillo grapes at different stages of ripening. J Agric Food Chem 53(10):4019–4025CrossRefGoogle Scholar
  32. 32.
    Sri Harsha PSC, Gardana C, Simonetti P, Spigno G, Lavelli V (2013) Characterization of phenolics, in vitro reducing capacity and anti-glycation activity of red grape skins recovered from winemaking by-products. Bioresour Technol 140:263–268CrossRefGoogle Scholar
  33. 33.
    Liang Z, Wu B, Fan P, Yang C, Duan W, Zheng X, Liu C, Li S (2008) Anthocyanin composition and content in grape berry skin in Vitis germplasm. Food Chem 111(4):837–844CrossRefGoogle Scholar
  34. 34.
    Mattivi F, Guzzon R, Vrhovsek U, Stefanini M, Velasco R (2006) Metabolite profiling of grape: flavonols and anthocyanins. J Agric Food Chem 54(20):7692–7702CrossRefGoogle Scholar
  35. 35.
    Mattivi F, Nicolini G (1997) Analysis of polyphenols and resveratrol in Italian wines. BioFactors 6:445–448CrossRefGoogle Scholar
  36. 36.
    Flamini R, Agnolin F, Seraglia R, de Rosso M, Panighel A, de Marchi F, Dalla Vedova A, Traldi P (2012) A fast and selective method for anthocyanin profiling of red wines by direct-infusion pneumatic spray mass spectrometry. Rapid Commun Mass Spectrom 26(3):355–362CrossRefGoogle Scholar
  37. 37.
    Seddon TJ, Downey MO (2008) Comparison of analytical methods for the determination of condensed tannins in grape skin. Aust J Grape Wine Res 14(1):54–61CrossRefGoogle Scholar
  38. 38.
    Mattivi F, Zulian C, Nicolini G, Valenti L (2002) Wine, biodiversity, technology, and antioxidants. Ann N Y Acad Sci 957:37–56CrossRefGoogle Scholar
  39. 39.
    Río Segade S, Pace C, Torchio F, Giacosa S, Gerbi V, Rolle L (2015) Impact of maceration enzymes on skin softening and relationship with anthocyanin extraction in wine grapes with different anthocyanin profiles. Food Res Int 71:50–57CrossRefGoogle Scholar
  40. 40.
    Bimpilas A, Tsimogiannis D, Balta-Brouma K, Lymperopoulou T, Oreopoulou V (2015) Evolution of phenolic compounds and metal content of wine during alcoholic fermentation and storage. Food Chem 178:164–171CrossRefGoogle Scholar
  41. 41.
    González-Neves G, Gil G, Barreiro L (2008) Influence of grape variety on the extraction of anthocyanins during the fermentation on skins. Eur Food Res Technol 226(6):1349–1355CrossRefGoogle Scholar
  42. 42.
    Gómez-Plaza E, Gil-Munoz R, López-Roca JM, Martínez-Cutillas A, Fernández-Fernández JI (2001) Phenolic compounds and color stability of red wines: effect of skin maceration time. Am J Enol Vitic 52(3):266–270Google Scholar
  43. 43.
    Romero-Cascales I, Fernández-Fernández JI, López-Roca JM, Gómez-Plaza E (2005) The maceration process during winemaking extraction of anthocyanins from grape skins into wine. Eur Food Res Technol 221(1–2):163–167CrossRefGoogle Scholar
  44. 44.
    Guchu E, Ebeler SE, Lee J, Mitchell AE (2015) Monitoring selected monomeric polyphenol composition in pre- and post-fermentation products of Vitis vinifera L. cv. Airén and cv. Grenache noir. LWT Food Sci Technol 60(1):552–562CrossRefGoogle Scholar
  45. 45.
    Ky I, Lorrain B, Kolbas N, Crozier A, Teissedre P-L (2014) Wine by-products: phenolic characterization and antioxidant activity evaluation of grapes and grape pomaces from six different French grape varieties. Molecules 19(1):482–506CrossRefGoogle Scholar
  46. 46.
    Busse-Valverde N, Gómez-Plaza E, López-Roca JM, Gil-Muñoz R, Fernández-Fernández JI, Bautista-Ortín AB (2010) Effect of different enological practices on skin and seed proanthocyanidins in three varietal wines. J Agric Food Chem 58(21):11333–11339CrossRefGoogle Scholar
  47. 47.
    Guendez R, Kallithraka S, Makris DP, Kefalas P (2005) Determination of low molecular weight polyphenolic constituents in grape (Vitis vinifera sp.) seed extracts: correlation with antiradical activity. Food Chem 89(1):1–9CrossRefGoogle Scholar
  48. 48.
    Muselík J, García-Alonso M, Martín-López MP, Žemlička M, Rivas-Gonzalo JC (2007) Measurement of antioxidant activity of wine catechins, procyanidins, anthocyanins and pyranoanthocyanins. IJMS 8(8):797–809CrossRefGoogle Scholar
  49. 49.
    Wang X, Tong H, Chen F, Gangemi JD (2010) Chemical characterization and antioxidant evaluation of muscadine grape pomace extract. Food Chem 123(4):1156–1162CrossRefGoogle Scholar
  50. 50.
    Cheynier V, Souquet J-M, Kontek A, Moutounet M (1994) Anthocyanin degradation in oxidising grape musts. J Sci Food Agric 66(3):283–288CrossRefGoogle Scholar
  51. 51.
    Amico V, Napoli E, Renda A, Ruberto G, Spatafora C, Tringali C (2004) Constituents of grape pomace from the Sicilian cultivar ‘Nerello Mascalese’. Food Chem 88(4):599–607CrossRefGoogle Scholar
  52. 52.
    Fulcrand H, Benabdeljalil C, Rigaud J, Cheynier V, Moutounet M (1998) A new class of wine pigments generated by reaction between pyruvic acid and grape anthocyanins. Phytochemistry 47(7):1401–1407CrossRefGoogle Scholar
  53. 53.
    Rockenbach II, Jungfer E, Ritter C, Santiago-Schübel B, Thiele B, Fett R, Galensa R (2012) Characterization of flavan-3-ols in seeds of grape pomace by CE, HPLC-DAD-MSn and LC-ESI-FTICR-MS. Food Res Int 48(2):848–855CrossRefGoogle Scholar
  54. 54.
    Obreque-Slier E, López-Solís R, Castro-Ulloa L, Romero-Díaz C, Peña-Neira Á (2012) Phenolic composition and physicochemical parameters of Carménère, Cabernet Sauvignon, Merlot and Cabernet Franc grape seeds (Vitis vinifera L.) during ripening. LWT Food Sci Technol 48(1):134–141CrossRefGoogle Scholar
  55. 55.
    Tounsi MS, Ouerghemmi I, Wannes WA, Ksouri R, Zemni H, Marzouk B, Kchouk ME (2009) Valorization of three varieties of grape. Ind Crops Prod 30(2):292–296CrossRefGoogle Scholar
  56. 56.
    Di Lecce G, Arranz S, Jáuregui O, Tresserra-Rimbau A, Quifer-Rada P, Lamuela-Raventós RM (2014) Phenolic profiling of the skin, pulp and seeds of Albariño grapes using hybrid quadrupole time-of-flight and triple-quadrupole mass spectrometry. Food Chem 145:874–882CrossRefGoogle Scholar
  57. 57.
    Rinaldi A, Jourdes M, Teissedre PL, Moio L (2014) A preliminary characterization of Aglianico (Vitis vinifera L. cv.) grape proanthocyanidins and evaluation of their reactivity towards salivary proteins. Food Chem 164:142–149CrossRefGoogle Scholar
  58. 58.
    Sagdic O, Ozturk I, Ozkan G, Yetim H, Ekici L, Yilmaz MT (2011) RP-HPLC-DAD analysis of phenolic compounds in pomace extracts from five grape cultivars: evaluation of their antioxidant, antiradical and antifungal activities in orange and apple juices. Food Chem 126(4):1749–1758CrossRefGoogle Scholar
  59. 59.
    Rockenbach II, Gonzaga LV, Rizelio VM, Gonçalves AEDSS, Genovese MI, Fett R (2011) Phenolic compounds and antioxidant activity of seed and skin extracts of red grape (Vitis vinifera and Vitis labrusca) pomace from Brazilian winemaking. Food Res Int 44(4):897–901CrossRefGoogle Scholar
  60. 60.
    González-Manzano S, Rivas-Gonzalo JC, Santos-Buelga C (2004) Extraction of flavan-3-ols from grape seed and skin into wine using simulated maceration. Anal Chim Acta 513(1):283–289CrossRefGoogle Scholar
  61. 61.
    Lee J (2010) Degradation kinetics of grape skin and seed proanthocyanidins in a model wine system. Food Chem 123(1):51–56CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • J. Valls
    • 1
    • 2
  • S. Agnolet
    • 1
  • F. Haas
    • 1
  • I. Struffi
    • 1
  • F. Ciesa
    • 1
    • 3
  • P. Robatscher
    • 1
  • Michael Oberhuber
    • 1
    Email author
  1. 1.Laimburg Research CentreBolzanoItaly
  2. 2.Univ. Bordeaux, ISVV, EA 4577, INRA, USC 1366, Unité de Recherche OenologieVillenave d’OrnonFrance
  3. 3.Provincial Environment Agency Laboratory of Food AnalysisBolzanoItaly

Personalised recommendations