European Food Research and Technology

, Volume 243, Issue 6, pp 931–939 | Cite as

The influence of style and origin on mineral composition of beers retailing in the UK

  • S. Rodrigo
  • S. D. Young
  • M. I. Talaverano
  • M. R. Broadley
Original Paper
  • 234 Downloads

Abstract

Beer has high nutritional values in terms of energy and is also a dietary source of antioxidants, carbohydrates and minerals among others. In Europe, 53 Mt of beer are produced annually, and with an average supply of 68.2 kg capita −1 year−1 among adults. In this study, the mineral composition of 125 commercial beer samples retailing in the UK, but originating from ten countries, was determined; such detailed information is lacking in UK food composition tables. Beer composition data are reported for Al, As, Ba, Ca, Cd, Co, Cr, Cs, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, Pb, Se, Sr, U, V and Zn, following analysis by inductively coupled plasma mass spectrometry. ANOVA results showed higher concentrations of Mo, Pb and Sr (0.160; 491.70 × 10−5; 0.38 mg L−1, respectively) for stout/porter style and a significant higher amount of minerals such as Al (3.835 mg L−1), Cd (8.64 × 10−5 mg L−1), Mn (1.02 mg L−1) or Ni (0.312 mg L−1) among others for lambic beer. Regarding the country of origin, higher Se concentrations were reported from beer brewed in the USA (0.110 mg L−1). It is concluded that beer style was determined to have a greater effect on beer mineral composition than origin or container type.

Keywords

Alcoholic beverage Nutrients Chemometrics ICP-MS 

Notes

Acknowledgements

The authors would like to acknowledge the financial support provided by COST FA-0905 which supported Dr. Rodrigo’s stay in the University of Nottingham and for samples provided by Philip Darby from the Nottingham Brewery.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subject.

References

  1. 1.
    FAO (2014) FAOSTAT: Food supply, Available at: http://faostat3.fao.org/faostat-gateway/go/to/home/E. Accessed 31 Dec 2014
  2. 2.
    Bamforth CW (2002) Nutritional aspects of beer—a review. Nutr Res 22:227–237CrossRefGoogle Scholar
  3. 3.
    Forsander OA (1998) Dietary influence on alcohol intake: a review. J Stud Alcohol 50(1):26–31CrossRefGoogle Scholar
  4. 4.
    Mayer O, Simon J, Roslova H (2001) A population study of beer consumption on folate, and homocysteine concentrations. Eur J Clinl Nutr 55:605–609CrossRefGoogle Scholar
  5. 5.
    Romeo J, Díaz L, González-Gross M, Wärnberg J, Díaz LE, Marcos A (2008) Effect of moderate beer consumption on blood lipid profile in healthy Spanish adults. Nutr Metab Cardiovas 18:365–372CrossRefGoogle Scholar
  6. 6.
    Walker C, Freeman G, Jugdaohsingh R, Powell JJ (2009) Silicon in beer: origin and concentration. In: Preedy Víctor R (ed) Beer in Health and Disease Prevention. Academic Press, London, pp 367–371CrossRefGoogle Scholar
  7. 7.
    Rodrigo S, Santamaría O, Chen Y, McGrath SP, Poblaciones MJ (2014) Selenium speciation in malt, wort, and beer made from selenium-biofortified two-rowed barley grain. J Agr Food Chem 62(25):5948–5953CrossRefGoogle Scholar
  8. 8.
    Movva R, Figueredo VM (2013) Alcohol and the heart: to abstain or not to abstain? Int J Cardiol 164:267–276CrossRefGoogle Scholar
  9. 9.
    Romeo J, Wärnberg J, Nova E, Díaz L, Gómez-Martínez S, Marcos A (2007) Moderate alcohol consumption and the immune system: a review. Brit J Nutr 98(1):111–115Google Scholar
  10. 10.
    Díaz LE, Montero A, González-Gross M, Vallejo AI, Romeo J, Marcos A (2002) Influence of alcohol consumption on immunological status: a review. Eur J Clin Nutr 56:50–53CrossRefGoogle Scholar
  11. 11.
    Rimm EB, Klatsky A, Grobbee D, Stampfer MJ (1996) Review of moderate alcohol consumption and reduced risk of coronary heart disease: is the effect due to beer, wine, or spirits? Brit J Med 312:731–736CrossRefGoogle Scholar
  12. 12.
    Food Standard Agency (2014) McCance and Widdowson’s the Composition of Foods, 7th edn. Royal Society of Chemistry, CambridgeGoogle Scholar
  13. 13.
    Rodrigo S, Young SD, Cook D, Wilkinson S, Clegg S, Bailey EH, Mathers AW, Broadley MR (2015) Selenium in commercial beer and losses in the brewing process from wheat to beer. Food Chem 182:9–13CrossRefGoogle Scholar
  14. 14.
    Montari L, Mayer H, Marconi O, Fantozzi P (2009) Minerals in beer. In: Beer in Health and Disease Prevention. (Eds.) Preedy VR Academic Press, CaliforniaGoogle Scholar
  15. 15.
    Rubio C, Ravelo A, Gutiérrez AJ, González Séller D, Hardisson A (2013) Nutricional interest of Na, K, Ca, Mg, Fe, Mn, Cu, Zn, Cr and Mo levels in dark beers. Ann Nutr Metab 63((suppl.)):1475–1476Google Scholar
  16. 16.
    Alcázar A, Jurado JM, Palacios-Morillo A, de Pablos F, Martín MJ (2012) Recognition of the geographical origin of beer based on support vector machines applied to chemical descriptors. Food Control 23:258–262CrossRefGoogle Scholar
  17. 17.
    Lledó S, Rodrigo S, Poblaciones MJ, Santamaría O (2015) Biomass yield, mineral content, and nutritive value of Poa pratensis as affected by non-clavicipitaceous fungal endophytes. Mycol Progress 14:67CrossRefGoogle Scholar
  18. 18.
    Izquierdo-Pulido M, Mariné-Font A, Vidal-Carou MC (2000) Effect of tyrosine on tyramine formation during beer fermentation. Food Chem 70:329–332CrossRefGoogle Scholar
  19. 19.
    Obuseng V, Nareetsile F, Kwaambwa HM (2012) A study of the removal of heavy metals from aqueous solutions by Moringa oleifera seeds and amine-based ligand 1,4-bis[N, N-bis(2-picoyl)amino]butane. Anal Chim Acta 730:87–92CrossRefGoogle Scholar
  20. 20.
    Willaert R, Nedovi VA (2006) Primary beer fermentation by immobilised yeast: a review on flavour formation and control strategies. J Chem Technol Biot 81(8):1353–1367CrossRefGoogle Scholar
  21. 21.
    Broadley MR, Alcock J, Alford J, Cartwright P, Foot I, Fairweather-Tait SJ, Hart DJ, Hurst R, Knott P, McGrath SP, Meacham MC, Norman K, Mowat H, Scott P, Stroud JL, Trovey M, Tucker M, White PJ, Young SD, Zhao F-J (2010) Selenium biofortification of high-yielding winter wheat (Triticum aestivum L.) by liquid or granular Se fertilization. Plant Soil 332:5–18CrossRefGoogle Scholar
  22. 22.
    Rodrigo S, Santamaría O, López-Bellido FJ, Poblaciones MJ (2013) Agronomic selenium biofortification of two-rowed barley under Mediterranean conditions. Plant Soil Environ 59(3):115–120Google Scholar
  23. 23.
    Joy EJM, Broadley MR, Young SD, Black CR, Chilimba ADC, Ander EL, Barlow TS, Watts MJ (2015) Soil type influences crop mineral composition in Malawi. Sci Total Environ 505:587–595CrossRefGoogle Scholar
  24. 24.
    Veríssimo MIS, Oliveira JABP, Gomes MTSR (2006) Leaching of aluminium from cooking pans and food containers. Sens Actua B 118:192–197CrossRefGoogle Scholar
  25. 25.
    Jiang X, Wen S, Xiang G (2010) Cloud point extraction combined with electrothermal atomic absorption spectrometry for the speciation of antimony(III) and antimony(V) in food packaging materials. J Hazard Mater 175:146–150CrossRefGoogle Scholar
  26. 26.
    Repetto M (1995) Toxicología avanzada. Ediciones Díaz de Santos, MadridGoogle Scholar
  27. 27.
    Szabó E, Sipos P (2014) Mineral and polyphenol contents of self-brewed and commercial beer samples. J MacroTrends Appl Sci 2(1):1–9Google Scholar
  28. 28.
    Fargašová A, Beinrohr E (1988) Metal-metal interactions in accumulation of V5+, Ni2+, Mo6+, Mn2+, and Cu2+ in under- and above-ground parts of Sinapsis alba. Chemosphere 36:1305–1317CrossRefGoogle Scholar
  29. 29.
    Alcázar A, Pablos F, Martín MJ, González AG (2002) Multivariate characterisation of beers according to their mineral content. Talanta 57:45–52CrossRefGoogle Scholar
  30. 30.
    Bamforth CW (2000) Beer: an ancient yet modern biotechonolgy. Chem Educ 5(3):102–112CrossRefGoogle Scholar
  31. 31.
    Kayodé APP, Hounhouigana JD, Noutb MJR (2007) Impact of brewing process operations on phytate, phenolic compounds and in vitro solubility of iron and zinc in opaque sorghum beer. LWT 40:834–841CrossRefGoogle Scholar
  32. 32.
    Cajka T, Riddellova K, Tomaniova M, Hajslova J (2010) Recognition of beer brand based on multivariate analysis of volatile fingerprint. J Chromatog A 1217:4195–4203CrossRefGoogle Scholar
  33. 33.
    De Keersmaecker J (1996) The mystery of lambic beer. Sci Am 275:74–80CrossRefGoogle Scholar
  34. 34.
    Blanco CA, Sancho D, Caballero I (2010) Aluminium content in beers and Silicon sequestering effects. Food Res Int 43:2432–2436CrossRefGoogle Scholar
  35. 35.
    Vitali D, Vedrina Dragogević I, Ševečić B (2008) Bioaccesibility of Ca, Mg, Mn and Cu from whole grain tea-bicuits: impact of protein, phytic acid and polyphenols. Food Chem 110:62–68CrossRefGoogle Scholar
  36. 36.
    Edney MJ, Rossnagel BG, McCaig R, Juskiw PE, Legge WG (2011) Reduced phytate barley malt to improve fermentation efficiency. J I Brewing 117(3):401–410CrossRefGoogle Scholar
  37. 37.
    BJCP Style Guidelines (2008). http://www.bjcp.org/2008styles/style13.php
  38. 38.
    Nagasako-Akazome Y, Honma D, Tagashira M, Kanda T, Yasue M, Ohtake Y (2007) Safety evaluation of polyphenols extracted from hop bracts. Food Chem Toxicol 45:1383–1392CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • S. Rodrigo
    • 1
  • S. D. Young
    • 2
  • M. I. Talaverano
    • 3
  • M. R. Broadley
    • 2
  1. 1.Agricultural Engineering SchoolUniversity of ExtremaduraBadajozSpain
  2. 2.School of BiosciencesUniversity of Nottingham, Sutton Bonington CampusLoughboroughUK
  3. 3.CICYTEX-Technological Institute of Food and Agriculture-INTAEX (Government of Extremadura)BadajozSpain

Personalised recommendations