Advertisement

European Food Research and Technology

, Volume 242, Issue 10, pp 1755–1762 | Cite as

Mead fermentation monitoring by proton transfer reaction mass spectrometry and medium infrared probe

  • Martha CuencaEmail author
  • Flavio Ciesa
  • Andrea Romano
  • Peter Robatscher
  • Matteo ScampicchioEmail author
  • Franco Biasioli
Original Paper

Abstract

Mead is a traditional alcoholic beverage similar to wine, but obtained by the fermentation of a diluted solution of honey. The rate of fermentation is generally monitored by the measurement of a set of physicochemical variables such as pH, titratable acidity, Brix degrees, sugars and ethanol concentration. This work aims at developing a new monitoring method for alcoholic fermentations that is based on two on-line approaches: a proton transfer reaction mass spectrometry (PTR-MS) and a fibre optic coupled attenuated total reflection (FTIR-ATR) spectroscopy. Microfermentations are performed on 100 mL musts in isothermal conditions at 20 °C. Musts consist on diluted honey solutions (24 Bx) with pollen (0.4 % w/v) and yeast (Saccharomyces cerevisiae subsp. bayanus). The effect of flavour enhancers [chilli (Capsicum annuum), clove (Eugenia caryophyllata) and a mixture of both] on the rate of fermentation was also evaluated. The results show that clove inhibits fermentation, whereas chilli increases the rate of fermentation. PTR-MS and FTIR-ATR are simple, fast and nondestructive techniques able to monitor the fermentation process without the need of sample preparation, extraction or pre-concentration steps.

Keywords

Mead Alcoholic fermentation Honey Proton transfer reaction mass spectrometry (PTR-MS) Fourier transform infrared attenuated total reflectance spectroscopy (FTIR-ATR) probe Kinetics 

Notes

Acknowledgments

We thank Province of Bolzano for financial support (Landesregierung mittels Beschluss Nr. 1472, 07.10.2013) and Evelyn Soini for her technical support. Laimburg Research Centre for Agriculture and Forestry is funded by the Autonomous Province of Bolzano.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Compliance with ethical requirements

This article does not contain any studies with human or animal subjects.

References

  1. 1.
    Ramalhosa E, Gomes T, Pereira AP, Dias T, Estevinho LM (2011) Mead production tradition versus modernity, vol 63, 1st edn. Elsevier Inc, AmsterdamGoogle Scholar
  2. 2.
    Krell R (1996) Value-added products from beekeepingGoogle Scholar
  3. 3.
    Pereira AP, Dias T, Andrade J, Ramalhosa E, Estevinho LM (2009) Mead production: selection and characterization assays of Saccharomyces cerevisiae strains. Food Chem Toxicol 47(8):2057–2063CrossRefGoogle Scholar
  4. 4.
    Sroka P, Tuszyński T (2007) Changes in organic acid contents during mead wort fermentation. Food Chem 104(3):1250–1257CrossRefGoogle Scholar
  5. 5.
    Mendes-ferreira A, Cosme F, Barbosa C, Falco V, Inês A, Mendes-faia A (2010) Optimization of honey-must preparation and alcoholic fermentation by Saccharomyces cerevisiae for mead production. Int J Food Microbiol 144(1):193–198CrossRefGoogle Scholar
  6. 6.
    Iglesias A, Pascoal A, Choupina A, Carvalho C, Feás X, Estevinho L (2014) Developments in the fermentation process and quality improvement strategies for mead production. Molecules 19:12577–12590CrossRefGoogle Scholar
  7. 7.
    Roldán A, van Muiswinkel GCJ, Lasanta C, Palacios V, Caro I (2011) Influence of pollen addition on mead elaboration: physicochemical and sensory characteristics. Food Chem 126(2):574–582CrossRefGoogle Scholar
  8. 8.
    Buratti S, Ballabio D, Giovanelli G, Dominguez CMZ, Moles A, Benedetti S, Sinelli N (2011) Monitoring of alcoholic fermentation using near infrared and mid infrared spectroscopies combined with electronic nose and electronic tongue. Anal Chim Acta 697(1–2):67–74CrossRefGoogle Scholar
  9. 9.
    Biasioli F, Gasperi F, Yeretzian C, Märk TD (2011) PTR-MS monitoring of VOCs and BVOCs in food science and technology. TrAC Trends Anal Chem 30(7):968–977CrossRefGoogle Scholar
  10. 10.
    Su W-H, He H-J, Sun D-W (2015) Non-destructive and rapid evaluation of staple foods quality by using spectroscopic techniques: a review. Crit Rev Food Sci Nutr Nutr, 19(0)Google Scholar
  11. 11.
    Beullens K, Kirsanov D, Irudayaraj J, Rudnitskaya A, Legin A, Nicolai B, Lammertyn J (2006) The electronic tongue and ATR–FTIR for rapid detection of sugars and acids in tomatoes. Sens Actuators B Chem 116(1–2):107–115CrossRefGoogle Scholar
  12. 12.
    Coimbra MA, Gonçalves F, Barros AS, Delgadillo I (2002) Fourier transform infrared spectroscopy and chemometric analysis of white wine polysaccharide extracts. J Agric Food Chem 50(12):3405–3411CrossRefGoogle Scholar
  13. 13.
    Gallardo-Velázquez T, Osorio-Revilla G, Loa MZ, Rivera-Espinoza Y (2009) Application of FTIR-HATR spectroscopy and multivariate analysis to the quantification of adulterants in Mexican honeys. Food Res Int 42(3):313–318CrossRefGoogle Scholar
  14. 14.
    Veale EL, Irudayaraj J, Demirci A (2007) An on-line approach to monitor ethanol fermentation using FTIR spectroscopy. Biotechnol Prog 23:494–500CrossRefGoogle Scholar
  15. 15.
    Lindinger W, Hansel A, Jordan A (1998) On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) medical applications, food control and environmental research. Int J Mass Spectrom Ion Process 173(3):191–241CrossRefGoogle Scholar
  16. 16.
    Lindinger C, Pollien P, Ali S, Yeretzian C, Blank I, Märk T (2005) Unambiguous identification of volatile organic compounds by proton-transfer reaction mass spectrometry coupled with GC/MS. Anal Chem 77(13):4117–4124CrossRefGoogle Scholar
  17. 17.
    Bunge M, Araghipour N, Mikoviny T, Dunkl J, Schnitzhofer R, Hansel A, Schinner F, Wisthaler A, Margesin R, Märk TD (2008) On-line monitoring of microbial volatile metabolites by proton transfer reaction-mass spectrometry. Appl Environ Microbiol 74(7):2179–2186CrossRefGoogle Scholar
  18. 18.
    Makhoul S, Romano A, Cappellin L, Spano G, Capozzi V, Benozzi E, Märk TD, Aprea E, Gasperi F, El-Nakat H, Guzzo J, Biasioli F (2014) Proton-transfer-reaction mass spectrometry for the study of the production of volatile compounds by bakery yeast starters: PTR-MS study of bakery yeast starters. J Mass Spectrom 49(9):850–859CrossRefGoogle Scholar
  19. 19.
    Buratti S, Benedetti S, Scampicchio M, Pangerod E (2004) Characterization and classification of Italian Barbera wines by using an electronic nose and an amperometric electronic tongue. Anal Chim Acta 525(1):133–139CrossRefGoogle Scholar
  20. 20.
    Olaoye OS, Kolawole OS (2013) Modeling of the kinetics of ethanol formation from glucose biomass in batch culture with a non structured model. Int J Eng Res Appl 3(4):562–565Google Scholar
  21. 21.
    Conway W, Wang X, Fernandes D, Burns R, Lawrance G, Puxty G, Maeder M (2011) Comprehensive kinetic and thermodynamic study of the reactions of CO2 (aq) and HCO3 with monoethanolamine (MEA) in aqueous solution. J Phys Chem A 115(50):14340–14349CrossRefGoogle Scholar
  22. 22.
    Di Egidio V, Sinelli N, Giovanelli G, Moles A, Casiraghi E (2010) NIR and MIR spectroscopy as rapid methods to monitor red wine fermentation. Eur Food Res Technol 230:947–955CrossRefGoogle Scholar
  23. 23.
    Spitaler R, Araghipour N, Mikoviny T, Wisthaler A, Via JD, Märk TD (2007) PTR-MS in enology: advances in analytics and data analysis. Int J Mass Spectrom 266(1–3):1–7CrossRefGoogle Scholar
  24. 24.
    Tsevdou M, Soukoulis C, Cappellin L, Gasperi F, Taoukis PS, Biasioli F (2013) Monitoring the effect of high pressure and transglutaminase treatment of milk on the evolution of flavour compounds during lactic acid fermentation using PTR-ToF-MS. Food Chem 138(4):2159–2167CrossRefGoogle Scholar
  25. 25.
    Mazarevica G, Diewok J, Baena JR, Rosenberg E, Lendl B (2004) On-line fermentation monitoring by mid-infrared spectroscopy. Appl Spectrosc 58(7):804–810CrossRefGoogle Scholar
  26. 26.
    Fayolle P, Picque D, Perret B, Latrille E, Corrieu G (1996) Determination of major compounds of alcoholic fermentation by middle-infrared spectroscopy: study of temperature effects and calibration methods. Appl Spectrosc 50(10):1325–1330CrossRefGoogle Scholar
  27. 27.
    Kuś PM, van Ruth S (2015) Discrimination of Polish unifloral honeys using overall PTR-MS and HPLC fingerprints combined with chemometrics. LWT Food Sci Technol 62(1):69–75CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Martha Cuenca
    • 1
    Email author
  • Flavio Ciesa
    • 2
  • Andrea Romano
    • 1
  • Peter Robatscher
    • 3
  • Matteo Scampicchio
    • 1
    Email author
  • Franco Biasioli
    • 4
  1. 1.Faculty of Science and TechnologyFree University of BozenBolzanoItaly
  2. 2.Laboratory of Food AnalysisProvincial Environment AgencyBolzanoItaly
  3. 3.Laboratory for Flavour and MetabolitesLaimburg Research Centre for Agriculture and ForestryOraItaly
  4. 4.Food Quality and Nutrition Area, IASMA Research and Innovation CentreFondazione Edmund MachS. Michele a/AItaly

Personalised recommendations