Advertisement

European Food Research and Technology

, Volume 242, Issue 7, pp 1169–1175 | Cite as

Gamma and electron-beam irradiation as viable technologies for wild mushrooms conservation: effects on macro- and micro-elements

  • Ângela Fernandes
  • João C. M. Barreira
  • Amilcar L. Antonio
  • Andrzej Rafalski
  • Patricia Morales
  • Virginia Férnandez-Ruiz
  • M. Beatriz P. P. Oliveira
  • Anabela Martins
  • Isabel C. F. R. Ferreira
Original Paper

Abstract

The consumption of mushrooms is increasing all over the world as a result of their sensorial and nutritional qualities. Among their nutrients, mushrooms present high levels of macro- and micro-elements. The qualitative composition in these elements is, however, often unknown. Mushrooms are known also as being very perishable products. Gamma rays or electron-beam irradiation has been applied to improve their shelf life and decrease health hazards caused by microorganisms. In addition, the effects of irradiation on the physicochemical and nutritional parameters of wild mushrooms have been studied by our research group. Nevertheless, the effects on essential macro- and micro-elements of these natural matrices are still unknown. The effects of gamma and electron-beam irradiation on the macro- and micro-elements profiles were evaluated in Boletus edulis, Hydnum repandum and Macrolepiota procera. The same elements were detected in the three species with some quantitative differences. The profiles obtained allowed the definition of proper dietary intakes, thus preventing undesirable effects derived from consuming mushrooms in quantities that exceed threshold levels of these minerals. The applied irradiation doses did not show a systematic effect on the macro- and micro-elements profiles, except for the 10 kGy. Accordingly, irradiation treatment, using gamma rays or electron beam up to 6 kGy, is a suitable technique to disinfest and/or decontaminate wild mushrooms, independently of their species or physical state.

Keywords

Wild mushrooms Irradiation Micro-elements Macro-elements Linear discriminant analysis 

Notes

Acknowledgments

The authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support to the research centers CIMO (PEst-OE/AGR/UI0690/2011), REQUIMTE (PEst-C/EQB/LA0006/2011) and ALIMNOVA research group from UCM. Â. Fernandes and J. C. M. Barreira thank FCT, POPH-QREN and FSE for their grants (SFRH/BD/76019/2011, SFRH/BPD/72802/2010, respectively).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

References

  1. 1.
    Agrahar-Murugkar D, Subbulakshmi G (2005) Nutritional value of edible wild mushrooms collected from the Khasi hills of Meghalaya. Food Chem 89:599–603CrossRefGoogle Scholar
  2. 2.
    Kalač P, Svoboda L (2000) A review of trace element concentrations in edible mushrooms. Food Chem 69:273–281CrossRefGoogle Scholar
  3. 3.
    Demirbaş A (2001) Heavy metal bioaccumulation by mushrooms from artificially fortified soils. Food Chem 74:293–301CrossRefGoogle Scholar
  4. 4.
    Gençcelep H, Uzun Y, Tunçtürk Y, Demirel K (2009) Determination of mineral contents of wild-grown edible mushrooms. Food Chem 113:1033–1036CrossRefGoogle Scholar
  5. 5.
    Falandysz J, Borovička J (2013) Macro and trace mineral constituents and radionuclides in mushrooms: health benefits and risks. Appl Microbiol Biotechnol 97:477–501CrossRefGoogle Scholar
  6. 6.
    Seeger R (1982) Toxische schwermetalle in Pilzen. Dtsch Apoth Ztg 122:1835–1844Google Scholar
  7. 7.
    Koyyalamudi SR, Jeong S-C, Manavalan S, Vysetti B, Pang G (2013) Micronutrient mineral content of the fruiting bodies of Australian cultivated Agaricus bisporus white button mushrooms. J Food Compos Anal 31:109–114CrossRefGoogle Scholar
  8. 8.
    Mahan LK, Escott-Stump S, Raymond JL (2012) Krause Dietoterapia, 13th edn. Elsevier, MexicoGoogle Scholar
  9. 9.
    McDowell LR (2003) Minerals in animal and human nutrition, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  10. 10.
    Tomkins A (2002) Nutrition, infection and immunity: public health implications. In: Calder PC, Field CJ, Gill HS (eds) Nutrition and immune function. CABI Publishing, Wallingford, pp 375–412CrossRefGoogle Scholar
  11. 11.
    FNB (Food and Nutrition Board) (2001) Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Institute of Medicine, Food and Nutrition Board. National Academy of Sciences, Washington, DCGoogle Scholar
  12. 12.
    Falade OS, Adepoju OO, Owoyomi O, Adewusi SR (2008) Chemical composition and toxic trace element composition of some Nigerian edible wild mushroom. Int J Food Sci Technol 43:24–29CrossRefGoogle Scholar
  13. 13.
    Işiloğlu M, Yilmaz F, Merdivan M (2009) Concentrations of trace elements in wild edible mushrooms. Food Chem 73:169–175Google Scholar
  14. 14.
    Akram K, Kwon J-H (2010) Food irradiation for mushrooms: a review. J Kor Soc Appl Biol Chem 53:257–265CrossRefGoogle Scholar
  15. 15.
    Rivera CS, Blanco D, Marco P, Oria R, Venturini ME (2011) Effects of electron-beam irradiation on the shelf life, microbial populations and sensory characteristics of summer truffles (Tuber aestivum) packaged under modified atmospheres. Food Microbiol 28:141–148CrossRefGoogle Scholar
  16. 16.
    Culleré L, Ferreira V, Venturini ME, Marco P, Blanco D (2012) Evaluation of gamma and electron-beam irradiation on the aromatic profile of black truffle (Tuber melanosporum) and summer truffle (Tuber aestivum). Innov Food Sci Emerg Technol 13:151–157CrossRefGoogle Scholar
  17. 17.
    Fernandes Â, Antonio AL, Oliveira MBPP, Martins A, Ferreira ICFR (2012) Effect of gamma and electron beam irradiation on the physico-chemical and nutritional properties of mushrooms: a review. Food Chem 135:641–650CrossRefGoogle Scholar
  18. 18.
    Fernandes Â, Antonio AL, Barreira JCM, Botelho L, Oliveira MBPP, Martins A, Ferreira ICFR (2013) Effects of gamma irradiation on the chemical composition and antioxidant activity of Lactarius deliciosus L. wild edible mushroom. Food Bioprocess Technol 6:2895–2903CrossRefGoogle Scholar
  19. 19.
    Fernandes Â, Barreira JCM, Antonio AL, Santos PMP, Martins A, Oliveira MBPP, Martins A, Ferreira ICFR (2013) Study of chemical changes and antioxidant activity variation induced by gamma-irradiation on wild mushrooms: comparative study through principal component analysis. Food Res Int 54:18–25CrossRefGoogle Scholar
  20. 20.
    Fernandes Â, Barreira JCM, Antonio AL, Oliveira MBPP, Martins A, Ferreira ICFR (2014) Combined effects of electron-beam irradiation and storage time on the chemical and antioxidant parameters of wild Macrolepiota procera dried samples. Food Bioprocess Technol 7:1606–1617CrossRefGoogle Scholar
  21. 21.
    Fernandes Â, Barreira JCM, Antonio AL, Oliveira MBPP, Martins A, Ferreira ICFR (2014) Feasibility of electron-beam irradiation to preserve wild dried mushrooms: effects on chemical composition and antioxidant activity. Innov Food Sci Emerg Technol 22:158–166CrossRefGoogle Scholar
  22. 22.
    Fernandes Â, Barros L, Antonio AL, Barreira JCM, Oliveira MBPP, Martins A, Ferreira ICFR (2014) Using gamma irradiation to attenuate the effects caused by drying or freezing in Macrolepiota procera organic acids and phenolic compounds. Food Bioprocess Technol. doi: 10.1007/s11947-013-1248-8 Google Scholar
  23. 23.
    Fernandes Â, Barreira JCM, Antonio AL, Oliveira MBPP, Martins A, Ferreira ICFR (2014) Triacylglycerols profiling as a chemical tool to identify mushrooms submitted to gamma or electron beam irradiation. Food Chem 159:399–406CrossRefGoogle Scholar
  24. 24.
    ICGFI—International Consultative Group on Food Irradiation (1999) Facts about food irradiation. International Consultative Group on Food Irradiation, BuckinghamshireGoogle Scholar
  25. 25.
    Horwitz W, Latimer GW (2005) Official methods of analysis of AOAC International, 18th edn. AOAC International, GaithersburgGoogle Scholar
  26. 26.
    Ruiz-Rodríguez B, Morales P, Fernández-Ruiz V, Sánchez-Mata MC, Cámara M, Díez-Marqués C, Pardo-de-Santayana M, Molina M, Tardío J (2011) Valorization of wild strawberry tree fruits (Arbutus unedo L.) through nutritional assessment and natural production data. Food Res Int 44:1244–1253CrossRefGoogle Scholar
  27. 27.
    Hill T, Lewicki P (2006) Statistics: methods and applications. A comprehensive reference for science, industry, and data mining. StatSoft, TulsaCrossRefGoogle Scholar
  28. 28.
    López A, García P, Garrido A (2008) Multivariate characterization of table olives according to their mineral nutrient composition. Food Chem 106:369–378CrossRefGoogle Scholar
  29. 29.
    Ayaz FA, Torun H, Colak A, Sesli E, Millson M, Glew RH (2011) Macro- and microelement contents of fruiting bodies of wild-edible mushrooms growing in the East Black Sea region of Turkey. Food Nutr Sci 2:53–59CrossRefGoogle Scholar
  30. 30.
    Regulation (EC) No 1169/2011 of the European Parliament and of the Council, of 25 October 2011, on the provision of food information to consumers. Official Journal of the European Union. 22.11.2011. L 304/18-63Google Scholar
  31. 31.
    Trumbo P, Schlicker S, Yates AA, Poos M (2002) Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J Am Diet Assoc 102:1621–1630CrossRefGoogle Scholar
  32. 32.
    McDermott JH (2000) Antioxidant nutrients: current dietary recommendations and research update. J Am Pharm Assoc 40:785–799CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Ângela Fernandes
    • 1
    • 2
    • 3
  • João C. M. Barreira
    • 1
    • 3
  • Amilcar L. Antonio
    • 1
    • 4
  • Andrzej Rafalski
    • 5
  • Patricia Morales
    • 2
  • Virginia Férnandez-Ruiz
    • 2
  • M. Beatriz P. P. Oliveira
    • 3
  • Anabela Martins
    • 1
  • Isabel C. F. R. Ferreira
    • 1
  1. 1.Centro de Investigação de Montanha (CIMO), ESAInstituto Politécnico de BragançaBragançaPortugal
  2. 2.Departamento de Nutrición y Bromatología II. Bromatología, Facultad de FarmaciaUniversidad Complutense de Madrid (UCM)MadridSpain
  3. 3.REQUIMTE/Departamento de Ciências Químicas, Faculdade de FarmáciaUniversidade do PortoPortoPortugal
  4. 4.IST/ITN, Instituto Tecnológico e NuclearSacavémPortugal
  5. 5.Center for Radiation Research and TechnologyInstitute of Nuclear Chemistry and TechnologyWarsawPoland

Personalised recommendations